Search results
Results from the WOW.Com Content Network
In particular, the discrete-time Lyapunov equation (also known as Stein equation) for is A X A H − X + Q = 0 {\displaystyle AXA^{H}-X+Q=0} where Q {\displaystyle Q} is a Hermitian matrix and A H {\displaystyle A^{H}} is the conjugate transpose of A {\displaystyle A} , while the continuous-time Lyapunov equation is
Lyapunov theory, a theorem related to the stability of solutions of differential equations near a point of equilibrium; Lyapunov central limit theorem, variant of the central limit theorem; Lyapunov vector-measure theorem, theorem in measure theory that the range of any real-valued, non-atomic vector measure is compact and convex
The contribution to the theory made by N. G. Chetaev [2] was so significant that many mathematicians, physicists and engineers consider him Lyapunov's direct successor and the next-in-line scientific descendant in the creation and development of the mathematical theory of stability.
In the theory of ordinary differential equations (ODEs), Lyapunov functions, named after Aleksandr Lyapunov, are scalar functions that may be used to prove the stability of an equilibrium of an ODE. Lyapunov functions (also called Lyapunov’s second method for stability) are important to stability theory of dynamical systems and control theory .
ISS unified the Lyapunov and input-output stability theories and revolutionized our view on stabilization of nonlinear systems, design of robust nonlinear observers, stability of nonlinear interconnected control systems, nonlinear detectability theory, and supervisory adaptive control. This made ISS the dominating stability paradigm in ...
The Lyapunov–Malkin theorem (named for Aleksandr Lyapunov and Ioel Malkin ) is a mathematical theorem detailing stability of nonlinear systems. [ 1 ] [ 2 ] Theorem
Log in to your AOL account to access email, news, weather, and more.
If, in addition, all eigenvalues of have negative real parts (is stable), and the unique solution of the Lyapunov equation + = is positive definite, the system is controllable. The solution is called the Controllability Gramian and can be expressed as W c = ∫ 0 ∞ e A τ B B T e A T τ d τ {\displaystyle {\boldsymbol {W_{c}}}=\int _{0 ...