enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Standard gravitational parameter - Wikipedia

    en.wikipedia.org/wiki/Standard_gravitational...

    The standard gravitational parameter μ of a celestial body is the product of the gravitational constant G and the mass M of that body. For two bodies, the parameter may be expressed as G ( m 1 + m 2 ) , or as GM when one body is much larger than the other: μ = G ( M + m ) ≈ G M . {\displaystyle \mu =G(M+m)\approx GM.}

  3. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation (from mass distribution within Earth) and the centrifugal force (from the Earth's rotation).

  4. Standard gravity - Wikipedia

    en.wikipedia.org/wiki/Standard_gravity

    The standard acceleration of gravity or standard acceleration of free fall, often called simply standard gravity and denoted by ɡ 0 or ɡ n, is the nominal gravitational acceleration of an object in a vacuum near the surface of the Earth. It is a constant defined by standard as 9.806 65 m/s 2 (about 32.174 05 ft/s 2).

  5. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    The quantity GM —the product of the gravitational constant and the mass of a given astronomical body such as the Sun or Earth—is known as the standard gravitational parameter (also denoted μ). The standard gravitational parameter GM appears as above in Newton's law of universal gravitation, as well as in formulas for the deflection of ...

  6. Geopotential - Wikipedia

    en.wikipedia.org/wiki/Geopotential

    Its geometric parameters are: semi-major axis a = 6378137.0 m, and flattening f = 1/298.257222101. If we also require that the enclosed mass M is equal to the known mass of the Earth (including atmosphere), as involved in the standard gravitational parameter, GM = 3986005 × 10 8 m 3 ·s −2, we obtain for the potential at the reference ellipsoid:

  7. List of equations in gravitation - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.

  8. Gaussian gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gaussian_gravitational...

    The IAU abandoned the defined value of k in 2012 in favour of a defined value of the astronomical unit of 1.495 978 707 00 × 10 11 m exactly, while the strength of the gravitational force is now to be expressed in the separate standard gravitational parameter G M ☉, measured in SI units of m 3 ⋅s −2. [2]

  9. Geopotential spherical harmonic model - Wikipedia

    en.wikipedia.org/wiki/Geopotential_spherical...

    For this the gravitational force, i.e. the gradient of the potential, must be computed. Efficient recursive algorithms have been designed to compute the gravitational force for any N z {\displaystyle N_{z}} and N t {\displaystyle N_{t}} (the max degree of zonal and tesseral terms) and such algorithms are used in standard orbit propagation software.