Search results
Results from the WOW.Com Content Network
A real tensor in 3D (i.e., one with a 3x3 component matrix) has as many as six independent invariants, three being the invariants of its symmetric part and three characterizing the orientation of the axial vector of the skew-symmetric part relative to the principal directions of the symmetric part.
For example, an element of the tensor product space V ⊗ W is a second-order "tensor" in this more general sense, [29] and an order-d tensor may likewise be defined as an element of a tensor product of d different vector spaces. [30] A type (n, m) tensor, in the sense defined previously, is also a tensor of order n + m in this more general sense.
In theoretical physics, an invariant is an observable of a physical system which remains unchanged under some transformation. Invariance, as a broader term, also applies to the no change of form of physical laws under a transformation, and is closer in scope to the mathematical definition. Invariants of a system are deeply tied to the ...
Similarly, every second rank tensor (such as the stress and the strain tensors) has three independent invariant quantities associated with it. One set of such invariants are the principal stresses of the stress tensor, which are just the eigenvalues of the stress tensor. Their direction vectors are the principal directions or eigenvectors.
This minimal decomposition is called a Waring decomposition; it is a symmetric form of the tensor rank decomposition. For second-order tensors this corresponds to the rank of the matrix representing the tensor in any basis, and it is well known that the maximum rank is equal to the dimension of the underlying vector space.
The second fundamental form of a parametric surface S in R 3 was introduced and studied by Gauss. First suppose that the surface is the graph of a twice continuously differentiable function, z = f ( x , y ) , and that the plane z = 0 is tangent to the surface at the origin.
The Ricci tensor can also be generalized to arbitrary affine connections, where it is an invariant that plays an especially important role in the study of projective geometry (geometry associated to unparameterized geodesics) (Nomizu & Sasaki 1994).
The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written concisely, and allows for the quantization of the electromagnetic field by the Lagrangian formulation described below.