Search results
Results from the WOW.Com Content Network
In algebraic geometry, a geometric quotient of an algebraic variety X with the action of an algebraic group G is a morphism of varieties: such that [1] (i) The map π {\displaystyle \pi } is surjective, and its fibers are exactly the G-orbits in X.
The direct approach can be made, by means of the function field of a variety (i.e. rational functions): take the G-invariant rational functions on it, as the function field of the quotient variety. Unfortunately this — the point of view of birational geometry — can only give a first approximation to the answer. As Mumford put it in the ...
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and () The quotient rule states that the derivative of h(x) is
The quotient metric does not always induce the quotient topology. For example, the topological quotient of the metric space [,] identifying all points of the form (,) is not metrizable since it is not first-countable, but the quotient metric is a well-defined metric on the same set which induces a coarser topology. Moreover, different metrics ...
In linear algebra, a quotient space is a vector space formed by taking a quotient group, where the quotient homomorphism is a linear map. By extension, in abstract algebra, the term quotient space may be used for quotient modules, quotient rings, quotient groups, or any quotient algebra. However, the use of the term for the more general cases ...
These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.
For example, density (mass divided by volume, in units of kg/m 3) is said to be a "quotient", whereas mass fraction (mass divided by mass, in kg/kg or in percent) is a "ratio". [8] Specific quantities are intensive quantities resulting from the quotient of a physical quantity by mass, volume, or other measures of the system "size". [3]
An effective quotient orbifold, e.g., [/] where the action has only finite stabilizers on the smooth space , is an example of a quotient stack. [2]If = with trivial action of (often is a point), then [/] is called the classifying stack of (in analogy with the classifying space of ) and is usually denoted by .