Search results
Results from the WOW.Com Content Network
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
More complicated relations can exist; for example, the set {1} is both a member and a proper subset of the set {1, {1}}. Just as arithmetic features binary operations on numbers, set theory features binary operations on sets. [9] The following is a partial list of them:
Set operation: Field: Set theory: Statement: The intersection of and is the set of elements that lie ... For example, the sets {,} and {,} are disjoint ...
In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection. [1] It is one of the fundamental operations through which sets can be combined and related to each other. A nullary union refers to a union of zero ( ) sets and it is by definition equal to the empty set.
Since relations are sets, they can be manipulated using set operations, including union, intersection, and complementation, leading to the algebra of sets. Furthermore, the calculus of relations includes the operations of taking the converse and composing relations. [7] [8] [9]
In set theory and its applications to logic, mathematics, and computer science, set-builder notation is a mathematical notation for describing a set by stating the properties that its members must satisfy. [1] Defining sets by properties is also known as set comprehension, set abstraction or as defining a set's intension.