Search results
Results from the WOW.Com Content Network
In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoids are semigroups with identity. Such algebraic structures occur in several branches of mathematics.
John M. Howie, Fundamentals of Semigroup Theory (1995), Clarendon Press, Oxford ISBN 0-19-851194-9; M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts and Categories with Applications to Wreath Products and Graphs, De Gruyter Expositions in Mathematics vol. 29, Walter de Gruyter, 2000, ISBN 3-11-015248-7.
In category theory, a branch of mathematics, a monoid (or monoid object, or internal monoid, or algebra) (M, μ, η) in a monoidal category (C, ⊗, I) is an object M together with two morphisms. μ: M ⊗ M → M called multiplication, η: I → M called unit, such that the pentagon diagram. and the unitor diagram commute.
In mathematics, a monoidal category (or tensor category) is a category equipped with a bifunctor ⊗ : C × C → C {\displaystyle \otimes :\mathbf {C} \times \mathbf {C} \to \mathbf {C} } that is associative up to a natural isomorphism , and an object I that is both a left and right identity for ⊗, again up to a natural isomorphism.
In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G 1 and G 2 and produces a graph H with the following properties: The vertex set of H is the Cartesian product V ( G 1 ) × V ( G 2 ) , where V ( G 1 ) and V ( G 2 ) are the vertex sets of G 1 and G 2 , respectively.
Numerical semigroups are commutative monoids and are also known as numerical monoids. [ 1 ] [ 2 ] The definition of numerical semigroup is intimately related to the problem of determining nonnegative integers that can be expressed in the form x 1 n 1 + x 2 n 2 + ... + x r n r for a given set { n 1 , n 2 , ..., n r } of positive integers and for ...
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively (just notation, not necessarily the elementary arithmetic multiplication ): x ⋅ y , or simply xy , denotes the result of applying the ...
Monads are to monoids as comonads are to comonoids. Every set is a comonoid in a unique way, so comonoids are less familiar in abstract algebra than monoids; however, comonoids in the category of vector spaces with its usual tensor product are important and widely studied under the name of coalgebras.