enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kirchhoff's law of thermal radiation - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_law_of_thermal...

    Kirchhoff's law of thermal radiation has a refinement in that not only is thermal emissivity equal to absorptivity, it is equal in detail. Consider a leaf. Consider a leaf. It is a poor absorber of green light (around 470 nm), which is why it looks green.

  3. Emissivity - Wikipedia

    en.wikipedia.org/wiki/Emissivity

    There is a fundamental relationship (Gustav Kirchhoff's 1859 law of thermal radiation) that equates the emissivity of a surface with its absorption of incident radiation (the "absorptivity" of a surface). Kirchhoff's law is rigorously applicable with regard to the spectral directional definitions of emissivity and absorptivity.

  4. ASTM Subcommittee E20.02 on Radiation Thermometry

    en.wikipedia.org/wiki/ASTM_Subcommittee_E20.02...

    Emissivity; Infrared thermometer; Kirchhoff's law of thermal radiation; Planck's law; Pyrometer; Radiance; Rayleigh–Jeans law; Sakuma–Hattori equation; Stefan–Boltzmann law; Thermal radiation; Thermography; Thin-filament pyrometry; Wien approximation; Wien's displacement law

  5. Idealized greenhouse model - Wikipedia

    en.wikipedia.org/wiki/Idealized_greenhouse_model

    The surface emits a radiative flux density F according to the Stefan–Boltzmann law: = where σ is the Stefan–Boltzmann constant. A key to understanding the greenhouse effect is Kirchhoff's law of thermal radiation. At any given wavelength the absorptivity of the atmosphere will be equal to the emissivity. Radiation from the surface could be ...

  6. Thermal radiation - Wikipedia

    en.wikipedia.org/wiki/Thermal_radiation

    In 1860, Gustav Kirchhoff published a mathematical description of thermal equilibrium (i.e. Kirchhoff's law of thermal radiation). [16]: 275–301 By 1884 the emissive power of a perfect blackbody was inferred by Josef Stefan using John Tyndall's experimental measurements, and derived by Ludwig Boltzmann from fundamental statistical principles ...

  7. Low emissivity - Wikipedia

    en.wikipedia.org/wiki/Low_emissivity

    A black body would have an emissivity of 1 and a perfect reflector would have a value of 0. Kirchhoff's law of thermal radiation states that absorption equals emissivity opaque (ε opaque) for every specific wavelength/frequency (materials often have quite different emissivities at different wavelengths). Therefore, if the asphalt has an ...

  8. Schwarzschild's equation for radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild's_equation...

    The same phenomena makes the absorptivity of incoming radiation less than 1 and equal to emissivity (Kirchhoff's law). When radiation has not passed far enough through a homogeneous medium for emission and absorption to reach thermodynamic equilibrium or when the medium changes with distance, Planck's Law and the Stefan-Boltzmann equation do ...

  9. Skin temperature (atmosphere) - Wikipedia

    en.wikipedia.org/wiki/Skin_temperature_(atmosphere)

    Assuming the skin layer is at some temperature T s, and using Kirchhoff's law (absorptivity = emissivity), the total radiation flux produced by the skin layer is given by: F o u t , T o t a l = 2 ϵ σ T s 4 {\displaystyle F_{out,Total}=2\epsilon \sigma T_{s}^{4}} where the factor of 2 comes from the fact that the skin layer radiates in both ...