enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Monoid (category theory) - Wikipedia

    en.wikipedia.org/wiki/Monoid_(category_theory)

    A monoid object in the category of monoids (with the direct product of monoids) is just a commutative monoid. This follows easily from the Eckmann–Hilton argument. A monoid object in the category of complete join-semilattices Sup (with the monoidal structure induced by the Cartesian product) is a unital quantale.

  3. Presentation of a monoid - Wikipedia

    en.wikipedia.org/wiki/Presentation_of_a_monoid

    First, one takes the symmetric closure R ∪ R −1 of R. This is then extended to a symmetric relation E ⊂ Σ ∗ × Σ ∗ by defining x ~ E y if and only if x = sut and y = svt for some strings u, v, s, t ∈ Σ ∗ with (u,v) ∈ R ∪ R −1. Finally, one takes the reflexive and transitive closure of E, which then is a monoid congruence.

  4. Monoid - Wikipedia

    en.wikipedia.org/wiki/Monoid

    Many definitions and theorems about monoids can be generalised to small categories with more than one object. For example, a quotient of a category with one object is just a quotient monoid. Monoids, just like other algebraic structures, also form their own category, Mon, whose objects are monoids and whose morphisms are monoid homomorphisms. [8]

  5. Monoidal category - Wikipedia

    en.wikipedia.org/wiki/Monoidal_category

    Any category with finite products can be regarded as monoidal with the product as the monoidal product and the terminal object as the unit. Such a category is sometimes called a cartesian monoidal category. For example: Set, the category of sets with the Cartesian product, any particular one-element set serving as the unit.

  6. Leavitt path algebra - Wikipedia

    en.wikipedia.org/wiki/Leavitt_path_algebra

    Condition (L): Every cycle in the graph has an exit. Condition (K): There is no vertex in the graph that is on exactly one simple cycle. Equivalently, a graph satisfies Condition (K) if and only if each vertex in the graph is either on no cycles or on two or more simple cycles.

  7. Rooted product of graphs - Wikipedia

    en.wikipedia.org/wiki/Rooted_product_of_graphs

    Every connected graph in which the domination number is half the number of vertices arises in this way, with the exception of the four-vertex cycle graph. These graphs can be used to generate examples in which the bound of Vizing's conjecture , an unproven inequality between the domination number of the graphs in a different graph product, the ...

  8. Rational monoid - Wikipedia

    en.wikipedia.org/wiki/Rational_monoid

    A finite monoid is rational. A group is a rational monoid if and only if it is finite.; A finitely generated free monoid is rational. The monoid M4 generated by the set {0,e, a,b, x,y} subject to relations in which e is the identity, 0 is an absorbing element, each of a and b commutes with each of x and y and ax = bx, ay = by = bby, xx = xy = yx = yy = 0 is rational but not automatic.

  9. Free group - Wikipedia

    en.wikipedia.org/wiki/Free_group

    S is a set of symbols, and we suppose for every s in S there is a corresponding "inverse" symbol, s −1, in a set S −1. Let T = S ∪ S −1, and define a word in S to be any written product of elements of T. That is, a word in S is an element of the monoid generated by T. The empty word is the word with no symbols at all.