enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Permittivity - Wikipedia

    en.wikipedia.org/wiki/Permittivity

    A dielectric permittivity spectrum over a wide range of frequencies. ε′ and ε″ denote the real and the imaginary part of the permittivity, respectively. Various processes are labeled on the image: ionic and dipolar relaxation, and atomic and electronic resonances at higher energies. [9]

  3. Dielectric spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Dielectric_spectroscopy

    A dielectric permittivity spectrum over a wide range of frequencies. The real and imaginary parts of permittivity are shown, and various processes are depicted: ionic and dipolar relaxation, and atomic and electronic resonances at higher energies.

  4. Electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_wave_equation

    is the speed of light (i.e. phase velocity) in a medium with permeability μ, and permittivity ε, and ∇ 2 is the Laplace operator. In a vacuum, v ph = c 0 = 299 792 458 m/s, a fundamental physical constant. [1] The electromagnetic wave equation derives from Maxwell's equations.

  5. Magneto-optic effect - Wikipedia

    en.wikipedia.org/wiki/Magneto-optic_effect

    According to classical physics, the speed of light varies with the permittivity of a material: = where is the velocity of light through the material, is the material permittivity, and is the material permeability. Because the permittivity is anisotropic, polarized light of different orientations will travel at different speeds.

  6. Tauc–Lorentz model - Wikipedia

    en.wikipedia.org/wiki/Tauc–Lorentz_model

    The real (blue solid line) and imaginary (orange dashed line) components of relative permittivity are plotted for model with parameters = 3.2 eV, = 4.5 eV, = 100 eV, = 1 eV, and = 3.5. The Tauc–Lorentz model is a mathematical formula for the frequency dependence of the complex-valued relative permittivity , sometimes referred to as the ...

  7. Havriliak–Negami relaxation - Wikipedia

    en.wikipedia.org/wiki/Havriliak–Negami_relaxation

    where is the permittivity at the high frequency limit, = where is the static, low frequency permittivity, and is the characteristic relaxation time of the medium. The exponents α {\displaystyle \alpha } and β {\displaystyle \beta } describe the asymmetry and broadness of the corresponding spectra.

  8. Relative permittivity - Wikipedia

    en.wikipedia.org/wiki/Relative_permittivity

    The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insulator measures the ability of the insulator to store electric energy in an electrical field.

  9. Vacuum permittivity - Wikipedia

    en.wikipedia.org/wiki/Vacuum_permittivity

    Vacuum permittivity, commonly denoted ε 0 (pronounced "epsilon nought" or "epsilon zero"), is the value of the absolute dielectric permittivity of classical vacuum. It may also be referred to as the permittivity of free space , the electric constant , or the distributed capacitance of the vacuum.