Search results
Results from the WOW.Com Content Network
The curve of the chains of a suspension bridge is always an intermediate curve between a parabola and a catenary, but in practice the curve is generally nearer to a parabola due to the weight of the load (i.e. the road) being much larger than the cables themselves, and in calculations the second-degree polynomial formula of a parabola is used.
While a parabolic arch may resemble a catenary arch, a parabola is a quadratic function while a catenary is the hyperbolic cosine, cosh(x), a sum of two exponential functions. One parabola is f(x) = x 2 + 3x − 1, and hyperbolic cosine is cosh(x) = e x + e −x / 2 . The curves are unrelated.
Concentric circles with orthogonal trajectories (1. example) Parabolas with orthogonal trajectories (2. example) In mathematics, an orthogonal trajectory is a curve which intersects any curve of a given pencil of (planar) curves orthogonally.
A ballistic trajectory is a parabola with homogeneous acceleration, such as in a space ship with constant acceleration in absence of other forces. On Earth the acceleration changes magnitude with altitude as g ( y ) = g 0 / ( 1 + y / R ) 2 {\textstyle g(y)=g_{0}/(1+y/R)^{2}} and direction (faraway targets) with latitude/longitude along the ...
A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.
The orbits' envelope of the projectiles (with constant initial speed) is a concave parabola. The initial speed is 10 m/s. We take g = 10 m/s 2. We consider the following example of envelope in motion. Suppose at initial height 0, one casts a projectile into the air with constant initial velocity v but different elevation angles θ.
A three-dimensional version of parabolic coordinates is obtained by rotating the two-dimensional system about the symmetry axis of the parabolas. Parabolic coordinates have found many applications, e.g., the treatment of the Stark effect and the potential theory of the edges.
The basic example of a parabolic PDE is the one-dimensional heat equation u t = α u x x , {\displaystyle u_{t}=\alpha \,u_{xx},} where u ( x , t ) {\displaystyle u(x,t)} is the temperature at position x {\displaystyle x} along a thin rod at time t {\displaystyle t} and α {\displaystyle \alpha } is a positive constant called the thermal ...