Search results
Results from the WOW.Com Content Network
Most smaller airplanes and gliders have no problems with 0g conditions. In fact, it can be enjoyable to have zero gravity in the cockpit. To produce 0g, the aircraft has to follow a ballistic flight path, which is essentially an upside down parabola. This is the only method to simulate zero gravity for humans on earth. In helicopters
The green path in this image is an example of a parabolic trajectory. A parabolic trajectory is depicted in the bottom-left quadrant of this diagram, where the gravitational potential well of the central mass shows potential energy, and the kinetic energy of the parabolic trajectory is shown in red. The height of the kinetic energy decreases ...
The trajectory then generalizes (without air resistance) from a parabola to a Kepler-ellipse with one focus at the center of the Earth (shown in fig. 3). The projectile motion then follows Kepler's laws of planetary motion. The trajectory's parameters have to be adapted from the values of a uniform gravity field stated above.
Jacobi constant, a Zero Velocity Surface and Curve (also Hill's curve) [1] A zero-velocity surface is a concept that relates to the N-body problem of gravity. It represents a surface a body of given energy cannot cross, since it would have zero velocity on the surface. It was first introduced by George William Hill. [2]
Weightlessness is the complete or near-complete absence of the sensation of weight, i.e., zero apparent weight. It is also termed zero g-force, or zero-g (named after the g-force) [1] or, incorrectly, zero gravity. Microgravity environment is more or less synonymous in its effects, with the recognition that g-forces are never exactly zero.
According to Science Daily, "Gravity plays a major role in our spatial orientation. Changes in gravitational forces, such as the transition to weightlessness during a space voyage, influence our spatial orientation and require adaptation by many of the physiological processes in which our balance system plays a part.
The three-body problem is a special case of the n-body problem, which describes how n objects move under one of the physical forces, such as gravity. These problems have a global analytical solution in the form of a convergent power series, as was proven by Karl F. Sundman for n = 3 and by Qiudong Wang for n > 3 (see n-body problem for details
The following is a list of notable unsolved problems grouped into broad areas of physics. [1]Some of the major unsolved problems in physics are theoretical, meaning that existing theories seem incapable of explaining a certain observed phenomenon or experimental result.