enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. T5 (language model) - Wikipedia

    en.wikipedia.org/wiki/T5_(language_model)

    T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [ 1 ] [ 2 ] Like the original Transformer model, [ 3 ] T5 models are encoder-decoder Transformers , where the encoder processes the input text, and the decoder generates the output text.

  3. Word embedding - Wikipedia

    en.wikipedia.org/wiki/Word_embedding

    In natural language processing, a word embedding is a representation of a word. The embedding is used in text analysis.Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning. [1]

  4. fastText - Wikipedia

    en.wikipedia.org/wiki/FastText

    fastText is a library for learning of word embeddings and text classification created by Facebook ... Facebook makes available pretrained models for 294 languages. ...

  5. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    Unlike previous models, BERT is a deeply bidirectional, unsupervised language representation, pre-trained using only a plain text corpus. Context-free models such as word2vec or GloVe generate a single word embedding representation for each word in the vocabulary, whereas BERT takes into account the context for each occurrence of a given word ...

  6. Sentence embedding - Wikipedia

    en.wikipedia.org/wiki/Sentence_embedding

    In practice however, BERT's sentence embedding with the [CLS] token achieves poor performance, often worse than simply averaging non-contextual word embeddings. SBERT later achieved superior sentence embedding performance [8] by fine tuning BERT's [CLS] token embeddings through the usage of a siamese neural network architecture on the SNLI dataset.

  7. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    Arora et al. (2016) [25] explain word2vec and related algorithms as performing inference for a simple generative model for text, which involves a random walk generation process based upon loglinear topic model. They use this to explain some properties of word embeddings, including their use to solve analogies.

  8. ELMo - Wikipedia

    en.wikipedia.org/wiki/ELMo

    ELMo (embeddings from language model) is a word embedding method for representing a sequence of words as a corresponding sequence of vectors. [1] It was created by researchers at the Allen Institute for Artificial Intelligence , [ 2 ] and University of Washington and first released in February, 2018.

  9. DBRX - Wikipedia

    en.wikipedia.org/wiki/DBRX

    DBRX is an open-sourced large language model (LLM) developed by Mosaic ML team at Databricks, released on March 27, 2024. [1] [2] [3] It is a mixture-of-experts transformer model, with 132 billion parameters in total. 36 billion parameters (4 out of 16 experts) are active for each token. [4]