Search results
Results from the WOW.Com Content Network
In mathematics, the hyperoperation sequence [nb 1] is an infinite sequence of arithmetic operations (called hyperoperations in this context) [1] [11] [13] that starts with a unary operation (the successor function with n = 0). The sequence continues with the binary operations of addition (n = 1), multiplication (n = 2), and exponentiation (n = 3).
Extended real numbers (top) vs projectively extended real numbers (bottom). In mathematics, the extended real number system [a] is obtained from the real number system by adding two elements denoted + and [b] that are respectively greater and lower than every real number.
The number of arithmetic operations is another resource that is commonly used. In this case, one talks of arithmetic complexity. If one knows an upper bound on the size of the binary representation of the numbers that occur during a computation, the time complexity is generally the product of the arithmetic complexity by a constant factor.
The computer may also offer facilities for splitting a product into a digit and carry without requiring the two operations of mod and div as in the example, and nearly all arithmetic units provide a carry flag which can be exploited in multiple-precision addition and subtraction. This sort of detail is the grist of machine-code programmers, and ...
The elementary functions are constructed by composing arithmetic operations, the exponential function (), the natural logarithm (), trigonometric functions (,), and their inverses. The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's ...
The aleph numbers differ from the infinity (∞) commonly found in algebra and calculus, in that the alephs measure the sizes of sets, while infinity is commonly defined either as an extreme limit of the real number line (applied to a function or sequence that "diverges to infinity" or "increases without bound"), or as an extreme point of the ...
Pentation is the next hyperoperation (infinite sequence of arithmetic operations, based off the previous one each time) after tetration and before hexation. It is defined as iterated (repeated) tetration (assuming right-associativity). This is similar to as tetration is iterated right-associative exponentiation. [1]
In mathematics, the Riemann sphere, named after Bernhard Riemann, [1] is a model of the extended complex plane (also called the closed complex plane): the complex plane plus one point at infinity. This extended plane represents the extended complex numbers , that is, the complex numbers plus a value ∞ {\displaystyle \infty } for infinity .