enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pyomo - Wikipedia

    en.wikipedia.org/wiki/Pyomo

    Pyomo allows users to formulate optimization problems in Python in a manner that is similar to the notation commonly used in mathematical optimization. Pyomo supports an object-oriented style of formulating optimization models, which are defined with a variety of modeling components: sets, scalar and multidimensional parameters, decision variables, objectives, constraints, equations ...

  3. HiGHS optimization solver - Wikipedia

    en.wikipedia.org/wiki/HiGHS_optimization_solver

    It has no external dependencies. A convenient thin wrapper to Python is available via the highspy PyPI package. Although generally single-threaded, some solver components can utilize multi-core architectures. HiGHS is designed to solve large-scale models and exploits problem sparsity.

  4. SciPy - Wikipedia

    en.wikipedia.org/wiki/SciPy

    SciPy (pronounced / ˈ s aɪ p aɪ / "sigh pie" [2]) is a free and open-source Python library used for scientific computing and technical computing. [3]SciPy contains modules for optimization, linear algebra, integration, interpolation, special functions, FFT, signal and image processing, ODE solvers and other tasks common in science and engineering.

  5. Gekko (optimization software) - Wikipedia

    en.wikipedia.org/wiki/Gekko_(optimization_software)

    GEKKO works on all platforms and with Python 2.7 and 3+. By default, the problem is sent to a public server where the solution is computed and returned to Python. There are Windows, MacOS, Linux, and ARM (Raspberry Pi) processor options to solve without an Internet connection.

  6. Gurobi Optimizer - Wikipedia

    en.wikipedia.org/wiki/Gurobi_Optimizer

    Gurobi Optimizer is a prescriptive analytics platform and a decision-making technology developed by Gurobi Optimization, LLC. The Gurobi Optimizer (often referred to as simply, “Gurobi”) is a solver, since it uses mathematical optimization to calculate the answer to a problem.

  7. List of optimization software - Wikipedia

    en.wikipedia.org/wiki/List_of_optimization_software

    Given a transformation between input and output values, described by a mathematical function, optimization deals with generating and selecting the best solution from some set of available alternatives, by systematically choosing input values from within an allowed set, computing the output of the function and recording the best output values found during the process.

  8. Comparison of optimization software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_optimization...

    Given a system transforming a set of inputs to output values, described by a mathematical function f, optimization refers to the generation and selection of the best solution from some set of available alternatives, [1] by systematically choosing input values from within an allowed set, computing the value of the function, and recording the best value found during the process.

  9. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...