Search results
Results from the WOW.Com Content Network
At 298 K, 1 pH unit is approximately equal to 59 mV. [2] When the electrode is calibrated with solutions of known concentration, by means of a strong acid–strong base titration, for example, a modified Nernst equation is assumed. = + [] where s is an empirical
The Henderson–Hasselbalch equation relates the pH of a solution containing a mixture of the two components to the acid dissociation constant, K a of the acid, and the concentrations of the species in solution. [6] Simulated titration of an acidified solution of a weak acid (pK a = 4.7) with alkali
In chemistry, acid value (AV, acid number, neutralization number or acidity) is a number used to quantify the acidity of a given chemical substance.It is the quantity of base (usually potassium hydroxide (KOH)), expressed as milligrams of KOH required to neutralize the acidic constituents in 1 gram of a sample.
The stepwise constant, K, for the formation of the same complex from ML and L is given by ML + L ⇌ ML 2; [ML 2] = K[ML][L] = Kβ 11 [M][L] 2. It follows that β 12 = Kβ 11. A cumulative constant can always be expressed as the product of stepwise constants. There is no agreed notation for stepwise constants, though a symbol such as K L
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".
Stoichiometry is not only used to balance chemical equations but also used in conversions, i.e., converting from grams to moles using molar mass as the conversion factor, or from grams to milliliters using density. For example, to find the amount of NaCl (sodium chloride) in 2.00 g, one would do the following:
At half-neutralization the ratio [A −] / [HA] = 1; since log(1) = 0, the pH at half-neutralization is numerically equal to pK a. Conversely, when pH = pK a, the concentration of HA is equal to the concentration of A −. The buffer region extends over the approximate range pK a ± 2. Buffering is weak outside the range pK a ± 1.
For example, if a macromolecule M has three binding sites, K′ 1 describes a ligand being bound to any of the three binding sites. In this example, K′ 2 describes two molecules being bound and K′ 3 three molecules being bound to the macromolecule. The microscopic or individual dissociation constant describes the equilibrium of ligands ...