Search results
Results from the WOW.Com Content Network
If the sum of the interior angles α and β is less than 180°, the two straight lines, produced indefinitely, meet on that side. In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's Elements, is a distinctive axiom in Euclidean geometry.
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.
The classical equivalence between Playfair's axiom and Euclid's fifth postulate collapses in the absence of triangle congruence. [18] This is shown by constructing a geometry that redefines angles in a way that respects Hilbert's axioms of incidence, order, and congruence, except for the Side-Angle-Side (SAS) congruence.
Playfair's axiom, an alternative to Euclid's fifth postulate on parallel lines, first stated by Proclus in the 5th century AD but named after John Playfair after he included it in his 1795 book Elements of Geometry and credited it to William Ludlam.
Posidonius was one of the first to attempt to prove Euclid's fifth postulate of geometry. He suggested changing the definition of parallel straight lines to an equivalent statement that would allow him to prove the fifth postulate. From there, Euclidean geometry could be restructured, placing the fifth postulate among the theorems instead. [38]
The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.
An axiom P is independent if there are no other axioms Q such that Q implies P. . In many cases independence is desired, either to reach the conclusion of a reduced set of axioms, or to be able to replace an independent axiom to create a more concise system (for example, the parallel postulate is independent of other axioms of Euclidean geometry, and provides interesting results when negated ...
The very old problem of proving Euclid's Fifth Postulate, the "Parallel Postulate", from his first four postulates had never been forgotten. Beginning not long after Euclid, many attempted demonstrations were given, but all were later found to be faulty, through allowing into the reasoning some principle which itself had not been proved from ...