Search results
Results from the WOW.Com Content Network
A reliability engineer has the task of assessing the probability of a plant operator failing to carry out the task of isolating a plant bypass route as required by procedure. However, the operator is fairly inexperienced in fulfilling this task and therefore typically does not follow the correct procedure; the individual is therefore unaware of ...
A fault tree diagram. Fault tree analysis (FTA) is a type of failure analysis in which an undesired state of a system is examined. This analysis method is mainly used in safety engineering and reliability engineering to understand how systems can fail, to identify the best ways to reduce risk and to determine (or get a feeling for) event rates of a safety accident or a particular system level ...
Component reliability, generally defined in terms of component failure rate, and external event probability are both used in quantitative safety assessment methods such as FTA. Related probabilistic methods are used to determine system Mean Time Between Failure (MTBF), system availability, or probability of mission success or failure ...
The method considers various factors that may contribute to human errors and provides a systematic approach for evaluating and quantifying these probabilities. Here are the key steps involved in the THERP method: Task Analysis: The first step is to break down the overall task into discrete steps or stages. Each stage represents a specific ...
The first-order reliability method, (FORM), is a semi-probabilistic reliability analysis method devised to evaluate the reliability of a system. The accuracy of the method can be improved by averaging over many samples, which is known as Line Sampling .
A science-based approach to reliability that uses modeling and simulation to design-in reliability. It helps to understand system performance and reduce decision risk during design and after the equipment is fielded. This approach models the root causes of failure such as fatigue, fracture, wear, and corrosion.
It examines the health, safety and environment and business risk of ‘active’ and ‘potential’ damage mechanisms to assess and rank failure probability and consequence. This ranking is used to optimize inspection intervals based on site-acceptable risk levels and operating limits, while mitigating risks as appropriate.
AltaRica is an object-oriented modeling language dedicated to probabilistic risk and safety analyses. It is a representative of the so-called model-based approach in reliability engineering. Since its version 3.0, it is developed by the non-profit AltaRica Association, which develops jointly the associated modeling environment AltaRica Wizard.