Search results
Results from the WOW.Com Content Network
In boolean logic, a disjunctive normal form (DNF) is a canonical normal form of a logical formula consisting of a disjunction of conjunctions; it can also be described as an OR of ANDs, a sum of products, or — in philosophical logic — a cluster concept. [1] As a normal form, it is useful in automated theorem proving.
In Boolean algebra, any Boolean function can be expressed in the canonical disjunctive normal form , [1] minterm canonical form, or Sum of Products (SoP or SOP) as a disjunction (OR) of minterms. The De Morgan dual is the canonical conjunctive normal form ( CCNF ), maxterm canonical form , or Product of Sums ( PoS or POS ) which is a ...
For example, start such a cellular automaton with eight cells set up with the outputs of the truth table (or the coefficients of the canonical disjunctive normal form) of the Boolean expression: 10101001. Then run the cellular automaton for seven more generations while keeping a record of the state of the leftmost cell.
Because the logical or means a disjunction formula is true when either one or both of its parts are true, it is referred to as an inclusive disjunction. This is in contrast with an exclusive disjunction, which is true when one or the other of the arguments are true, but not both (referred to as exclusive or, or XOR).
[8] [9] This provides a procedure for converting between conjunctive normal form and disjunctive normal form. [10] Since the Disjunctive Normal Form Theorem shows that every formula of propositional logic is expressible in disjunctive normal form, every formula is also expressible in conjunctive normal form by means of effecting the conversion ...
Then, since is truth-functionally equivalent to (), [17] and is equivalent to (), [17] the Sheffer stroke suffices to define the set of connectives {,,}, [17] which is shown to be truth-functionally complete by the Disjunctive Normal Form Theorem.
De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.
Connectives are dual if their truth-tables are dual: conjunction and disjunction are dual, and negation is self-dual. [110] The dual of a formula is obtained by replacing each connective by its dual, [110] [111] e.g., for a formula containing only conjunction, disjunction, and negation (such as a formula in disjunctive normal form), its dual is ...