Search results
Results from the WOW.Com Content Network
The process of obtaining solution of (x, y) of an Euler spiral can thus be described as: Map L of the original Euler spiral by multiplying with factor a to L′ of the normalized Euler spiral; Find (x′, y′) from the Fresnel integrals; and; Map (x′, y′) to (x, y) by scaling up (denormalize) with factor 1 / a . Note that 1 / a ...
The sector contour used to calculate the limits of the Fresnel integrals. This can be derived with any one of several methods. One of them [5] uses a contour integral of the function around the boundary of the sector-shaped region in the complex plane formed by the positive x-axis, the bisector of the first quadrant y = x with x ≥ 0, and a circular arc of radius R centered at the origin.
is equal to one. This parametrization gives the same value for the curvature, as it amounts to division by r 3 in both the numerator and the denominator in the preceding formula. The same circle can also be defined by the implicit equation F(x, y) = 0 with F(x, y) = x 2 + y 2 – r 2. Then, the formula for the curvature in this case gives
The curvature is taken to be positive if the curve turns in the same direction as the surface's chosen normal, and otherwise negative. The directions in the normal plane where the curvature takes its maximum and minimum values are always perpendicular, if k 1 does not equal k 2, a result of Euler (1760), and are called principal directions.
The values are checked during each iteration to see whether they have reached a critical "escape" condition, or "bailout". If that condition is reached, the calculation is stopped, the pixel is drawn, and the next x, y point is examined. For some starting values, escape occurs quickly, after only a small number of iterations.
The determinant of the Hessian matrix, when evaluated at a critical point of a function, is equal to the Gaussian curvature of the function considered as a manifold. The eigenvalues of the Hessian at that point are the principal curvatures of the function, and the eigenvectors are the principal directions of curvature.
Newton's method uses curvature information (i.e. the second derivative) to take a more direct route. In calculus , Newton's method (also called Newton–Raphson ) is an iterative method for finding the roots of a differentiable function f {\displaystyle f} , which are solutions to the equation f ( x ) = 0 {\displaystyle f(x)=0} .
For a surface defined in 3D space, the mean curvature is related to a unit normal of the surface: = ^ where the normal chosen affects the sign of the curvature. The sign of the curvature depends on the choice of normal: the curvature is positive if the surface curves "towards" the normal.