enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    A prime number is a natural number that has exactly two distinct natural number divisors: the number 1 and itself. To find all the prime numbers less than or equal to a given integer n by Eratosthenes' method: Create a list of consecutive integers from 2 through n: (2, 3, 4, ..., n). Initially, let p equal 2, the smallest prime number.

  3. Linear congruential generator - Wikipedia

    en.wikipedia.org/wiki/Linear_congruential_generator

    The second row is the same generator with a seed of 3, which produces a cycle of length 2. Using a = 4 and c = 1 (bottom row) gives a cycle length of 9 with any seed in [0, 8]. A linear congruential generator (LCG) is an algorithm that yields a sequence of pseudo-randomized numbers calculated with a discontinuous piecewise linear equation.

  4. Formulas for generating Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Formulas_for_generating...

    For Fibonacci numbers starting with F 1 = 0 and F 2 = 1 and with each succeeding Fibonacci number being the sum of the preceding two, one can generate a sequence of Pythagorean triples starting from (a 3, b 3, c 3) = (4, 3, 5) via

  5. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  6. Wham! make chart history as Last Christmas takes second ... - AOL

    www.aol.com/wham-chart-history-last-christmas...

    Wham! have made chart history as Last Christmas becomes the first song to be crowned Christmas number one two years in a row. The festive classic had a 39-year wait to secure the coveted title ...

  7. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    When a triple of numbers a, b and c forms a primitive Pythagorean triple, then (c minus the even leg) and one-half of (c minus the odd leg) are both perfect squares; however this is not a sufficient condition, as the numbers {1, 8, 9} pass the perfect squares test but are not a Pythagorean triple since 1 2 + 8 2 ≠ 9 2.

  8. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    An arithmetic progression is a finite or infinite sequence of numbers such that consecutive numbers in the sequence all have the same difference. [84] This difference is called the modulus of the progression. [85] For example, 3, 12, 21, 30, 39, ..., is an infinite arithmetic progression with modulus 9.

  9. Integer sequence - Wikipedia

    en.wikipedia.org/wiki/Integer_sequence

    An integer sequence is computable if there exists an algorithm that, given n, calculates a n, for all n > 0. The set of computable integer sequences is countable.The set of all integer sequences is uncountable (with cardinality equal to that of the continuum), and so not all integer sequences are computable.