Search results
Results from the WOW.Com Content Network
In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of ...
Conditional probabilities, conditional expectations, and conditional probability distributions are treated on three levels: discrete probabilities, probability density functions, and measure theory. Conditioning leads to a non-random result if the condition is completely specified; otherwise, if the condition is left random, the result of ...
In statistics, kernel regression is a non-parametric technique to estimate the conditional expectation of a random variable.The objective is to find a non-linear relation between a pair of random variables X and Y.
In probability theory, the Doob–Dynkin lemma, named after Joseph L. Doob and Eugene Dynkin (also known as the factorization lemma), characterizes the situation when one random variable is a function of another by the inclusion of the -algebras generated by the random variables.
In mathematics, non-commutative conditional expectation is a generalization of the notion of conditional expectation in classical probability. The space of essentially bounded measurable functions on a σ {\displaystyle \sigma } -finite measure space ( X , μ ) {\displaystyle (X,\mu )} is the canonical example of a commutative von Neumann algebra .
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
In words: the variance of Y is the sum of the expected conditional variance of Y given X and the variance of the conditional expectation of Y given X. The first term captures the variation left after "using X to predict Y", while the second term captures the variation due to the mean of the prediction of Y due to the randomness of X.
Under some other settings, TVaR is the conditional expectation of loss above a given value, whereas the expected shortfall is the product of this value with the probability of it occurring. [3] The former definition may not be a coherent risk measure in general, however it is coherent if the underlying distribution is continuous. [4]