Search results
Results from the WOW.Com Content Network
Lignin confers structural integrity to plants. Lignin is so heterogeneous and so recalcitrant that its value is almost exclusively measured as a fuel. hemicellulose is composed of branched polysaccharides. A particular problem is that hemicellulose is covalently linked to lignin, usually through ferulic acid component of the
Idealized structure of lignin from a softwood. Lignin is a class of complex organic polymers that form key structural materials in the support tissues of most plants. [1] Lignins are particularly important in the formation of cell walls, especially in wood and bark, because they lend rigidity and do not rot easily.
The lignin is converted to lignosulfonates, which are soluble and can be separated from the cellulose fibers. For the production of cellulose, the sulfite process competes with the Kraft process which produces stronger fibers and is less environmentally costly. idealized scheme for lignin depolymerization by the Sulfite process.
Biopolymers can be sustainable, carbon neutral and are always renewable, because they are made from plant or animal materials which can be grown indefinitely. Since these materials come from agricultural crops , their use could create a sustainable industry.
The term "lignin characterization" (or "lignin analysis") refers to a group of activities within lignin research aiming at describing the characteristics of a lignin by determination of its most important properties. [1] Most often, this term is used to describe the characterization of technical lignins by means of chemical or thermo-chemical ...
Cellulosic sugars are used as renewable resources for biochemical and biofuels industries and can be used to produce intermediates by fermentative processes. The availability of industrial sugars from renewable resources, in sufficient quantities and at a favorable cost enables the products to be cost-competitive to fossil fuel based products.
Torrefaction is a thermochemical treatment of biomass at 200 to 320 °C (392 to 608 °F). It is carried out under atmospheric pressure and in the absence of oxygen.During the torrefaction process, the water contained in the biomass as well as superfluous volatiles are released, and the biopolymers (cellulose, hemicellulose and lignin) partly decompose, giving off various types of volatiles. [4]
Factors controlling the rate of degradation include percent crystallinity, molecular weight, and hydrophobicity. The degradation rate depends on the location in the body, which influences the environment surrounding the polymer such as pH, enzymes concentration, and amount of water, among others. These are rapidly decomposed. [8]