enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    Finding global maxima and minima is the goal of mathematical optimization. If a function is continuous on a closed interval, then by the extreme value theorem, global maxima and minima exist. Furthermore, a global maximum (or minimum) either must be a local maximum (or minimum) in the interior of the domain, or must lie on the boundary of the ...

  3. Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Quasi-Newton_method

    In numerical analysis, a quasi-Newton method is an iterative numerical method used either to find zeroes or to find local maxima and minima of functions via an iterative recurrence formula much like the one for Newton's method, except using approximations of the derivatives of the functions in place of exact derivatives.

  4. Extreme value theory - Wikipedia

    en.wikipedia.org/wiki/Extreme_value_theory

    In many situations it is customary and convenient to extract the annual maxima (minima), generating an annual maxima series (AMS). The second method relies on extracting, from a continuous record, the peak values reached for any period during which values exceed a certain threshold (falls below a certain threshold).

  5. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    Finding the extrema of functionals is similar to finding the maxima and minima of functions. The maxima and minima of a function may be located by finding the points where its derivative vanishes (i.e., is equal to zero). The extrema of functionals may be obtained by finding functions for which the functional derivative is equal to zero.

  6. Mathematical analysis - Wikipedia

    en.wikipedia.org/wiki/Mathematical_analysis

    Fermat's method of adequality allowed him to determine the maxima and minima of functions and the tangents of curves. [13] Descartes's publication of La Géométrie in 1637, which introduced the Cartesian coordinate system , is considered to be the establishment of mathematical analysis.

  7. Global optimization - Wikipedia

    en.wikipedia.org/wiki/Global_optimization

    Global optimization is a branch of applied mathematics and numerical analysis that attempts to find the global minima or maxima of a function or a set of functions on a given set. It is usually described as a minimization problem because the maximization of the real-valued function g ( x ) {\displaystyle g(x)} is equivalent to the minimization ...

  8. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    The conditions that distinguish maxima, or minima, from other stationary points are called 'second-order conditions' (see 'Second derivative test'). If a candidate solution satisfies the first-order conditions, then the satisfaction of the second-order conditions as well is sufficient to establish at least local optimality.

  9. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    The critical points of Lagrangians occur at saddle points, rather than at local maxima (or minima). [ 4 ] [ 17 ] Unfortunately, many numerical optimization techniques, such as hill climbing , gradient descent , some of the quasi-Newton methods , among others, are designed to find local maxima (or minima) and not saddle points.