enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mandelbrot set - Wikipedia

    en.wikipedia.org/wiki/Mandelbrot_set

    The Mandelbrot set within a continuously colored environment. The Mandelbrot set (/ ˈ m æ n d əl b r oʊ t,-b r ɒ t /) [1] [2] is a two-dimensional set with a relatively simple definition that exhibits great complexity, especially as it is magnified.

  3. List of chaotic maps - Wikipedia

    en.wikipedia.org/wiki/List_of_chaotic_maps

    Cantor set; de Rham curve; Gravity set, or Mitchell-Green gravity set; Julia set - derived from complex quadratic map; Koch snowflake - special case of de Rham curve; Lyapunov fractal; Mandelbrot set - derived from complex quadratic map; Menger sponge; Newton fractal; Nova fractal - derived from Newton fractal; Quaternionic fractal - three ...

  4. Plotting algorithms for the Mandelbrot set - Wikipedia

    en.wikipedia.org/wiki/Plotting_algorithms_for...

    Every pixel that contains a point of the Mandelbrot set is colored black. Every pixel that is colored black is close to the Mandelbrot set. Exterior distance estimate may be used to color whole complement of Mandelbrot set. The upper bound b for the distance estimate of a pixel c (a complex number) from the Mandelbrot set is given by [6] [7] [8]

  5. Connectedness locus - Wikipedia

    en.wikipedia.org/wiki/Connectedness_locus

    Without doubt, the most famous connectedness locus is the Mandelbrot set, which arises from the family of complex quadratic polynomials : f c ( z ) = z 2 + c {\displaystyle f_{c}(z)=z^{2}+c\,} The connectedness loci of the higher-degree unicritical families,

  6. Orbit trap - Wikipedia

    en.wikipedia.org/wiki/Orbit_trap

    Mandelbrot set rendered using a combination of cross and point shaped orbit traps. In mathematics, an orbit trap is a method of colouring fractal images based upon how close an iterative function, used to create the fractal, approaches a geometric shape, called a "trap". Typical traps are points, lines, circles, flower shapes and even raster ...

  7. List of fractals by Hausdorff dimension - Wikipedia

    en.wikipedia.org/wiki/List_of_fractals_by...

    According to Benoit Mandelbrot, "A fractal is by definition a set for which the Hausdorff-Besicovitch dimension strictly exceeds the topological dimension." [1] Presented here is a list of fractals, ordered by increasing Hausdorff dimension, to illustrate what it means for a fractal to have a low or a high dimension.

  8. Misiurewicz point - Wikipedia

    en.wikipedia.org/wiki/Misiurewicz_point

    A preperiodic orbit. In mathematics, a Misiurewicz point is a parameter value in the Mandelbrot set (the parameter space of complex quadratic maps) and also in real quadratic maps of the interval [1] for which the critical point is strictly pre-periodic (i.e., it becomes periodic after finitely many iterations but is not periodic itself).

  9. Orbit portrait - Wikipedia

    en.wikipedia.org/wiki/Orbit_portrait

    Rays for above angles land on points of that orbit . Parameter c is a center of period 9 hyperbolic component of Mandelbrot set. For parabolic julia set c = -1.125 + 0.21650635094611*i. It is a root point between period 2 and period 6 components of Mandelbrot set. Orbit portrait of period 2 orbit with valence 3 is : [2]