enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    Taylor's theorem is named after the mathematician Brook Taylor, who stated a version of it in 1715, [2] although an earlier version of the result was already mentioned in 1671 by James Gregory. [3] Taylor's theorem is taught in introductory-level calculus courses and is one of the central elementary tools in mathematical analysis.

  3. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions ...

  4. Multi-index notation - Wikipedia

    en.wikipedia.org/wiki/Multi-index_notation

    3.1 Proof. 4 See also. ... where the last term (the remainder) depends on the exact version of Taylor's formula. For instance, for the Cauchy formula ...

  5. Arctangent series - Wikipedia

    en.wikipedia.org/wiki/Arctangent_series

    The extremely slow convergence of the arctangent series for | | makes this formula impractical per se. Kerala-school mathematicians used additional correction terms to speed convergence. John Machin (1706) expressed ⁠ 1 4 π {\displaystyle {\tfrac {1}{4}}\pi } ⁠ as a sum of arctangents of smaller values, eventually resulting in a variety of ...

  6. Calculus on Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Calculus_on_Euclidean_space

    For each in , Taylor's formula implies we can write: = = with , where is a smooth function with compact ... Here is a sketch of proof of the formula. [19]

  7. Delta method - Wikipedia

    en.wikipedia.org/wiki/Delta_method

    Demonstration of this result is fairly straightforward under the assumption that () is differentiable near the neighborhood of and ′ is continuous at with ′ ().To begin, we use the mean value theorem (i.e.: the first order approximation of a Taylor series using Taylor's theorem):

  8. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    A complex-analysis version of this method [4] is to consider ! as a Taylor coefficient of the exponential function = =!, computed by Cauchy's integral formula as ! = | | = +. This line integral can then be approximated using the saddle-point method with an appropriate choice of contour radius r = r n {\displaystyle r=r_{n}} .

  9. Lagrange inversion theorem - Wikipedia

    en.wikipedia.org/wiki/Lagrange_inversion_theorem

    In mathematical analysis, the Lagrange inversion theorem, also known as the Lagrange–Bürmann formula, gives the Taylor series expansion of the inverse function of an analytic function. Lagrange inversion is a special case of the inverse function theorem .