Search results
Results from the WOW.Com Content Network
The Redfield ratio or Redfield stoichiometry is the consistent atomic ratio of carbon, nitrogen and phosphorus found in marine phytoplankton and throughout the deep oceans. The term is named for American oceanographer Alfred C. Redfield who in 1934 first described the relatively consistent ratio of nutrients in marine biomass samples collected ...
Alfred C. Redfield. Alfred Clarence Redfield (November 15, 1890 – March 17, 1983) was an American oceanographer known for having discovered the Redfield ratio, which describes the ratio between nutrients in plankton and ocean water. [1] He was a professor of physiology at Harvard University and one of the original staff of the Woods Hole ...
Redfield proposed that the ratio of carbon to nitrogen to phosphorus (106:16:1) in the ocean was controlled by the phytoplankton's requirements, as phytoplankton subsequently release nitrogen and phosphorus as they are remineralized.
High-nutrient, low-chlorophyll (HNLC) regions are regions of the ocean where the abundance of phytoplankton is low and fairly constant despite the availability of macronutrients. Phytoplankton rely on a suite of nutrients for cellular function. Macronutrients (e.g., nitrate, phosphate, silicic acid) are generally available in higher quantities ...
Ecological stoichiometry seeks to discover how the chemical content of organisms shapes their ecology. Ecological stoichiometry has been applied to studies of nutrient recycling, resource competition, animal growth, and nutrient limitation patterns in whole ecosystems. The Redfield ratio of the world's oceans is one very famous application of ...
The Redfield ratio describes the relative atomic concentrations of critical nutrients in plankton biomass and is conventionally written "106 C: 16 N: 1 P." This expresses the fact that one atom of phosphorus and 16 of nitrogen are required to " fix " 106 carbon atoms (or 106 molecules of CO
The ratio of carbon to nitrogen and phosphorus varies from place to place, [14] but has an average ratio near 106C:16N:1P, known as the Redfield ratio. Trace metals such as magnesium, cadmium, iron, calcium, barium and copper are orders of magnitude less prevalent in phytoplankton organic material, but necessary for certain metabolic processes ...
The marine carbon cycle is also biologically tied to the nitrogen and phosphorus cycles by a near-constant stoichiometric ratio C:N:P of 106:16:1, also known as the Redfield Ketchum Richards (RKR) ratio, [3] which states that organisms tend to take up nitrogen and phosphorus incorporating new organic carbon.