Search results
Results from the WOW.Com Content Network
Sixth power. In arithmetic and algebra the sixth power of a number n is the result of multiplying six instances of n together. So: n6 = n × n × n × n × n × n. Sixth powers can be formed by multiplying a number by its fifth power, multiplying the square of a number by its fourth power, by cubing a square, or by squaring a cube.
Knuth's up-arrow notation. In mathematics, Knuth's up-arrow notation is a method of notation for very large integers, introduced by Donald Knuth in 1976. [1] In his 1947 paper, [2] R. L. Goodstein introduced the specific sequence of operations that are now called hyperoperations. Goodstein also suggested the Greek names tetration, pentation ...
For display to humans, that usually means the decimal numeral system (that is, m is an integer times a power of 10, like 1/1000 or 25/100). For intermediate values stored in digital computers, it often means the binary numeral system ( m is an integer times a power of 2).
The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .
Perfect number. In number theory, a perfect number is a positive integer that is equal to the sum of its positive proper divisors, that is, divisors excluding the number itself. For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28.
The "one-half" symbol has its own code point as a precomposed character in the Number Forms block of Unicode, rendering as ½. The reduced size of this symbol may make it illegible to readers with relatively mild visual impairment; consequently the decomposed forms 1 ⁄ 2 or 1 / 2 may be more appropriate.
The following table lists the names of small numbers used in the long and short scales, along with the power of 10, engineering notation, and International System of Units (SI) symbols and prefixes. [1] [page needed] [2] [page needed] [3] [page needed] [4] [5] [6] [7]
Particular values of the gamma function. The gamma function is an important special function in mathematics. Its particular values can be expressed in closed form for integer and half-integer arguments, but no simple expressions are known for the values at rational points in general.