Search results
Results from the WOW.Com Content Network
In mathematics, a time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time. Thus it is a sequence of discrete-time data. Examples of time series are heights of ocean tides, counts of sunspots, and the daily closing value of ...
Fan chart (time series) In time series analysis, a fan chart is a chart that joins a simple line chart for observed past data, by showing ranges for possible values of future data together with a line showing a central estimate or most likely value for the future outcomes. As predictions become increasingly uncertain the further into the future ...
Data visualization refers to the techniques used to communicate data or information by encoding it as visual objects (e.g., points, lines, or bars) contained in graphics. The goal is to communicate information clearly and efficiently to users. It is one of the steps in data analysis or data science. According to Vitaly Friedman (2008) the "main ...
A spreadsheet is a computer application for computation, organization, analysis and storage of data in tabular form. [1][2][3] Spreadsheets were developed as computerized analogs of paper accounting worksheets. [4] The program operates on data entered in cells of a table. Each cell may contain either numeric or text data, or the results of ...
A simple run chart showing data collected over time. The median of the observed data (73) is also shown on the chart. A run chart, also known as a run-sequence plot is a graph that displays observed data in a time sequence. Often, the data displayed represent some aspect of the output or performance of a manufacturing or other business process.
Decomposition of time series. The decomposition of time series is a statistical task that deconstructs a time series into several components, each representing one of the underlying categories of patterns. [1] There are two principal types of decomposition, which are outlined below.
X-13ARIMA-SEATS, successor to X-12-ARIMA and X-11, is a set of statistical methods for seasonal adjustment and other descriptive analysis of time series data that are implemented in the U.S. Census Bureau's software package. [3] These methods are or have been used by Statistics Canada, Australian Bureau of Statistics, and the statistical ...
Moving-average model. In time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. [1][2] The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable.