enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nitric acid - Wikipedia

    en.wikipedia.org/wiki/Nitric_acid

    For example, copper reacts with dilute nitric acid at ambient temperatures with a 3:8 stoichiometry: 3 Cu + 8 HNO 3 → 3 Cu(NO 3) 2 + 2 NO + 4 H 2 O. The nitric oxide produced may react with atmospheric oxygen to give nitrogen dioxide. With more concentrated nitric acid, nitrogen dioxide is produced directly in a reaction with 1:4 stoichiometry:

  3. Iron compounds - Wikipedia

    en.wikipedia.org/wiki/Iron_compounds

    Iron is by far the most reactive element in its group; it is pyrophoric when finely divided and dissolves easily in dilute acids, giving Fe 2+. However, it does not react with concentrated nitric acid and other oxidizing acids due to the formation of an impervious oxide layer, which can nevertheless react with hydrochloric acid. [10]

  4. Passivation (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Passivation_(chemistry)

    In the 1830s, Michael Faraday and Christian Friedrich Schönbein studied that issue systematically and demonstrated that when a piece of iron is placed in dilute nitric acid, it will dissolve and produce hydrogen, but if the iron is placed in concentrated nitric acid and then returned to the dilute nitric acid, little or no reaction will take ...

  5. Reactivity series - Wikipedia

    en.wikipedia.org/wiki/Reactivity_series

    The most reactive metals, such as sodium, will react with cold water to produce hydrogen and the metal hydroxide: 2 Na (s) + 2 H 2 O (l) →2 NaOH (aq) + H 2 (g) Metals in the middle of the reactivity series, such as iron , will react with acids such as sulfuric acid (but not water at normal temperatures) to give hydrogen and a metal salt ...

  6. Iron - Wikipedia

    en.wikipedia.org/wiki/Iron

    Iron reacts readily with oxygen and water to produce brown-to-black hydrated iron oxides, commonly known as rust. Unlike the oxides of some other metals that form passivating layers, rust occupies more volume than the metal and thus flakes off, exposing more fresh surfaces for corrosion.

  7. Ostwald process - Wikipedia

    en.wikipedia.org/wiki/Ostwald_process

    The Ostwald process begins with burning ammonia.Ammonia burns in oxygen at temperature about 900 °C (1,650 °F) and pressure up to 8 standard atmospheres (810 kPa) [4] in the presence of a catalyst such as platinum gauze, alloyed with 10% rhodium to increase its strength and nitric oxide yield, platinum metal on fused silica wool, copper or nickel to form nitric oxide (nitrogen(II) oxide) and ...

  8. Nitrosation and nitrosylation - Wikipedia

    en.wikipedia.org/wiki/Nitrosation_and_nitrosylation

    Roussin's salts may react similarly, but it is unclear if they release NO + or NO •. [4] In general, nitric oxide is a poor nitrosant, Traube-type reactions notwithstanding. But atmospheric oxygen can oxidize nitric oxide to nitrogen dioxide, which does nitrosate.

  9. Oxidizing agent - Wikipedia

    en.wikipedia.org/wiki/Oxidizing_agent

    The international pictogram for oxidizing chemicals. Dangerous goods label for oxidizing agents. An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or "accepts"/"receives" an electron from a reducing agent (called the reductant, reducer, or electron donor).