Search results
Results from the WOW.Com Content Network
Developments in the 1960s, in particular the spread of FM broadcasting and the development of the compact audio cassette with Dolby-B Noise Reduction, alerted engineers to the need for a weighting curve that gave subjectively meaningful results on the typical random noise that limited the performance of broadcast circuits, equipment and radio circuits.
Noise curves are a common way to characterise background noise in unoccupied buildings and spaces. [1] Their purpose is to produce a single-value representation of a complete sound spectrum. International standards organizations ( ISO , [ 2 ] ANSI [ 3 ] and ASA ) recognize the need to objectify judgements on the amount of ambient noise in ...
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
[a] A more precise model known as the Inflected Exponential function, [3] indicates that loudness increases with a higher exponent at low and high levels and with a lower exponent at moderate levels. [4] The sensitivity of the human ear changes as a function of frequency, as shown in the equal-loudness graph. Each line on this graph shows the ...
The intensities displayed on the audiogram appear as linear 10 dBHL steps. However, decibels are a logarithimic scale, so that successive 10 dB increments represent greater increases in loudness. For humans, normal hearing is between −10 dB(HL) and 15 dB(HL), [2] [3] although 0 dB from 250 Hz to 8 kHz is deemed to be 'average' normal hearing.
The proper notations for sound exposure level using this reference are L W/(400 μPa 2 ⋅s) or L W (re 400 μPa 2 ⋅s), but the notations dB SEL, dB(SEL), dBSEL, or dB SEL are very common, even if they are not accepted by the SI. [3]
The Sound Reduction Index is expressed in decibels (dB). It is the weighted sound reduction index for a partition or single component only. This is a laboratory-only measurement, which uses knowledge of the relative sizes of the rooms in the test suite, and the reverberation time in the receiving room, and the known level of noise which can pass between the rooms in the suite by other routes ...
Peak signal-to-noise ratio (PSNR) is an engineering term for the ratio between the maximum possible power of a signal and the power of corrupting noise that affects the fidelity of its representation. Because many signals have a very wide dynamic range, PSNR is usually expressed as a logarithmic quantity using the decibel scale.