Search results
Results from the WOW.Com Content Network
The joint distribution encodes the marginal distributions, i.e. the distributions of each of the individual random variables and the conditional probability distributions, which deal with how the outputs of one random variable are distributed when given information on the outputs of the other random variable(s).
Joint and marginal distributions of a pair of discrete random variables, X and Y, dependent, thus having nonzero mutual information I(X; Y). The values of the joint distribution are in the 3×4 rectangle; the values of the marginal distributions are along the right and bottom margins.
In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.
The conditional distribution contrasts with the marginal distribution of a random variable, which is its distribution without reference to the value of the other variable. If the conditional distribution of Y {\displaystyle Y} given X {\displaystyle X} is a continuous distribution , then its probability density function is known as the ...
The conditional probability can be found by the quotient of the probability of the joint intersection of events A and B, that is, (), the probability at which A and B occur together, and the probability of B: [2] [6] [7] = ().
The squared Mahalanobis distance () is decomposed into a sum of k terms, each term being a product of three meaningful components. [6] Note that in the case when k = 1 {\displaystyle k=1} , the distribution reduces to a univariate normal distribution and the Mahalanobis distance reduces to the absolute value of the standard score .
where the marginal, joint, and/or conditional probability density functions are denoted by ... (or, via the product topology, more) of the random variables.
where () and () are the marginal entropies, () and () are the conditional entropies, and (,) is the joint entropy of and . Notice the analogy to the union, difference, and intersection of two sets: in this respect, all the formulas given above are apparent from the Venn diagram reported at the beginning of the article.