Search results
Results from the WOW.Com Content Network
Therefore no trait is purely Mendelian, but many traits are almost entirely Mendelian, including canonical examples, such as those listed below. Purely Mendelian traits are a minority of all traits, since most phenotypic traits exhibit incomplete dominance, codominance, and contributions from many genes.
In cases of intermediate inheritance due to incomplete dominance, the principle of dominance discovered by Mendel does not apply.Nevertheless, the principle of uniformity works, as all offspring in the F 1-generation have the same genotype and same phenotype.
Co-dominance, where allelic products co-exist in the phenotype, is different from incomplete dominance, where the quantitative interaction of allele products produces an intermediate phenotype. For example, in co-dominance, a red homozygous flower and a white homozygous flower will produce offspring that have red and white spots.
Very few phenotypes are purely Mendelian traits. Common violations of the Mendelian model include incomplete dominance, codominance, genetic linkage, environmental effects, and quantitative contributions from a number of genes (see: gene interactions, polygenic inheritance, oligogenic inheritance). [1] [2]
Precondition for the example: Two parent dogs (P-generation) are homozygous for two different genetic traits. In each case one parent has the dominant, one the recessive allele. Their offsprings in the F 1-generation are heterozygous at both loci and show the dominant traits in their phenotypes according to the law of dominance and uniformity.
This is because the sickling happens only at low oxygen concentrations. With regards to the actual concentration of hemoglobin in the circulating cells, the alleles demonstrate co-dominance as both 'normal' and mutant forms co-exist in the bloodstream. Thus it is an ambiguous condition showing both incomplete dominance and co-dominance.
However, our understanding of the molecular mechanisms behind genomic imprinting show that it is the maternal genome that controls much of the imprinting of both its own and the paternally-derived genes in the zygote, making it difficult to explain why the maternal genes would willingly relinquish their dominance to that of the paternally ...
In non-human species [ edit ] Evidence from research regarding coloration in Heliconius butterflies suggests that disassortative mating is more likely to emerge when phenotypic variation is based on self-referencing (mate preference depends on phenotype of the choosing individual, therefore dominance in relationships influence the evolution of ...