Search results
Results from the WOW.Com Content Network
In geometry, many uniform tilings on sphere, euclidean plane, and hyperbolic plane can be made by Wythoff construction within a fundamental triangle, (p q r), defined by internal angles as π/p, π/q, and π/r. Special cases are right triangles (p q 2).
Here, a tiling is a covering of the plane by non-overlapping polygons or other shapes, and a tiling is aperiodic if it does not contain arbitrarily large periodic regions or patches. However, despite their lack of translational symmetry , Penrose tilings may have both reflection symmetry and fivefold rotational symmetry .
There are 17 combinations of regular convex polygons that form 21 types of plane-vertex tilings. [6] [7] Polygons in these meet at a point with no gap or overlap. Listing by their vertex figures, one has 6 polygons, three have 5 polygons, seven have 4 polygons, and ten have 3 polygons. [8]
Star forms have either regular star polygon faces or vertex figures or both. This list includes these: all 75 nonprismatic uniform polyhedra; a few representatives of the infinite sets of prisms and antiprisms; one degenerate polyhedron, Skilling's figure with overlapping edges.
Clipping is defined as the interaction of subject and clip polygons. While clipping usually involves finding the intersections (regions of overlap) of subject and clip polygons, clipping algorithms can also be applied with other boolean clipping operations: difference, where the clipping polygons remove overlapping regions from the subject; union, where clipping returns the regions covered by ...
The regular finite polygons in 3 dimensions are exactly the blends of the planar polygons (dimension 2) with the digon (dimension 1). They have vertices corresponding to a prism ({n/m}#{} where n is odd) or an antiprism ({n/m}#{} where n is even). All polygons in 3 space have an even number of vertices and edges.
The regular complex polygons have been completely characterized, and can be described using a symbolic notation developed by Coxeter. A regular complex polygon with all 2-edges can be represented by a graph, while forms with k-edges can only be related by hypergraphs. A k-edge can be seen as a set of vertices, with no order implied. They may be ...
A polytope is a geometric object with flat sides, which exists in any general number of dimensions. The following list of polygons, polyhedra and polytopes gives the names of various classes of polytopes and lists some specific examples.