enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear motion - Wikipedia

    en.wikipedia.org/wiki/Linear_motion

    The linear motion can be of two types: uniform linear motion, with constant velocity (zero acceleration); and non-uniform linear motion, with variable velocity (non-zero acceleration). The motion of a particle (a point-like object) along a line can be described by its position x {\displaystyle x} , which varies with t {\displaystyle t} (time).

  3. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    Velocity and acceleration in non-uniform circular motion. In non-uniform circular motion, an object moves in a circular path with varying speed. Since the speed is changing, there is tangential acceleration in addition to normal acceleration. The net acceleration is directed towards the interior of the circle (but does not pass through its center).

  4. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Consequently, the acceleration is the second derivative of position, [7] often written . Position, when thought of as a displacement from an origin point, is a vector: a quantity with both magnitude and direction. [9]: 1 Velocity and acceleration are vector quantities as well. The mathematical tools of vector algebra provide the means to ...

  5. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    In uniform circular motion, that is moving with constant speed along a circular path, a particle experiences an acceleration resulting from the change of the direction of the velocity vector, while its magnitude remains constant. The derivative of the location of a point on a curve with respect to time, i.e. its velocity, turns out to be always ...

  6. Mean speed theorem - Wikipedia

    en.wikipedia.org/wiki/Mean_speed_theorem

    The mean speed theorem, also known as the Merton rule of uniform acceleration, [1] was discovered in the 14th century by the Oxford Calculators of Merton College, and was proved by Nicole Oresme. It states that a uniformly accelerated body (starting from rest, i.e. zero initial velocity) travels the same distance as a body with uniform speed ...

  7. Rotation around a fixed axis - Wikipedia

    en.wikipedia.org/wiki/Rotation_around_a_fixed_axis

    Thus, the angular acceleration is the rate of change of the angular velocity, just as acceleration is the rate of change of velocity. The translational acceleration of a point on the object rotating is given by =, where r is the radius or distance from the axis of rotation. This is also the tangential component of acceleration: it is tangential ...

  8. Velocity - Wikipedia

    en.wikipedia.org/wiki/Velocity

    The instantaneous velocity of an object is the limit average velocity as the time interval approaches zero. At any particular time t , it can be calculated as the derivative of the position with respect to time: [ 2 ] v = lim Δ t → 0 Δ s Δ t = d s d t . {\displaystyle {\boldsymbol {v}}=\lim _{{\Delta t}\to 0}{\frac {\Delta {\boldsymbol {s ...

  9. Inertial frame of reference - Wikipedia

    en.wikipedia.org/wiki/Inertial_frame_of_reference

    All frames of reference with zero acceleration are in a state of constant rectilinear motion (straight-line motion) with respect to one another. In such a frame, an object with zero net force acting on it, is perceived to move with a constant velocity, or, equivalently, Newton's first law of motion holds. Such frames are known as inertial.