Search results
Results from the WOW.Com Content Network
c. 150 BCE – According to Strabo (1.1.9), Seleucus of Seleucia is the first to state that the tides are due to the attraction of the Moon, and that the height of the tides depends on the Moon's position relative to the Sun. [30] c. 150 BCE – Hipparchus uses parallax to determine that the distance to the Moon is roughly 380,000 km (236,100 ...
One particularly distant body is 90377 Sedna, which was discovered in November 2003.It has an extremely eccentric orbit that takes it to an aphelion of 937 AU. [2] It takes over 10,000 years to orbit, and during the next 50 years it will slowly move closer to the Sun as it comes to perihelion at a distance of 76 AU from the Sun. [3] Sedna is the largest known sednoid, a class of objects that ...
Extra-close oppositions of Mars happen every 15 to 17 years, when we pass between Mars and the Sun around the time of its perihelion (closest point to the Sun in orbit). The minimum distance between Earth and Mars has been declining over the years, and in 2003 the minimum distance was 55.76 million km, nearer than any such encounter in almost ...
The closest in the past 1,000 years was in 1761, when Mars and Jupiter appeared to the naked eye as a single bright object, according to Giorgini. Looking ahead, the year 2348 will be almost as close.
The radius of the Sun is 0.0047 AU (700,000 km; 400,000 mi). [58] Thus, the Sun occupies 0.00001% (1 part in 10 7) of the volume of a sphere with a radius the size of Earth's orbit, whereas Earth's volume is roughly 1 millionth (10 −6) that of the Sun. Jupiter, the largest planet, is 5.2 AU from the Sun and has a radius of 71,000 km (0.00047 ...
The closest in the past 1,000 years was in 1761, when Mars and Jupiter appeared to the naked eye as a single bright object, according to Giorgini. Looking ahead, the year 2348 will be almost as close.
Based on Jupiter's composition, researchers have made the case for an initial formation outside the molecular nitrogen (N 2) snow line, which is estimated at 20–30 AU (3.0–4.5 billion km; 1.9–2.8 billion mi) from the Sun, and possibly even outside the argon snow line, which may be as far as 40 AU (6.0 billion km; 3.7 billion mi).
Mars's average distance from the Sun is roughly 230 million km (143 million mi), and its orbital period is 687 (Earth) days. The solar day (or sol) on Mars is only slightly longer than an Earth day: 24 hours, 39 minutes, and 35.244 seconds. [185] A Martian year is equal to 1.8809 Earth years, or 1 year, 320 days, and 18.2 hours. [2]