Search results
Results from the WOW.Com Content Network
The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.
If the function f does not have any continuous antiderivative which takes the value zero at the zeros of f (this is the case for the sine and the cosine functions), then sgn(f(x)) ∫ f(x) dx is an antiderivative of f on every interval on which f is not zero, but may be discontinuous at the points where f(x) = 0.
However, this formal similarity notwithstanding, possessing a complex-antiderivative is a much more restrictive condition than its real counterpart. While it is possible for a discontinuous real function to have an anti-derivative, anti-derivatives can fail to exist even for holomorphic functions of a complex variable.
There is a version of the theorem for complex functions: suppose U is an open set in C and f : U → C is a function that has a holomorphic antiderivative F on U. Then for every curve γ : [ a , b ] → U , the curve integral can be computed as ∫ γ f ( z ) d z = F ( γ ( b ) ) − F ( γ ( a ) ) . {\displaystyle \int _{\gamma }f(z)\,dz=F ...
In calculus, the constant of integration, often denoted by (or ), is a constant term added to an antiderivative of a function () to indicate that the indefinite integral of () (i.e., the set of all antiderivatives of ()), on a connected domain, is only defined up to an additive constant.
Nonelementary antiderivatives can often be evaluated using Taylor series. Even if a function has no elementary antiderivative, its Taylor series can always be integrated term-by-term like a polynomial, giving the antiderivative function as a Taylor series with the same radius of convergence. However, even if the integrand has a convergent ...
The x antiderivative of y and the second antiderivative of f, Euler notation. D-notation can be used for antiderivatives in the same way that Lagrange's notation is [ 11 ] as follows [ 10 ] D − 1 f ( x ) {\displaystyle D^{-1}f(x)} for a first antiderivative,
Finding an elementary antiderivative is very sensitive to details. For instance, the following algebraic function (posted to sci.math.symbolic by Henri Cohen in 1993 [3]) has an elementary antiderivative, as Wolfram Mathematica since version 13 shows (however, Mathematica does not use the Risch algorithm to compute this integral): [4] [5]