enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Geoid - Wikipedia

    en.wikipedia.org/wiki/Geoid

    The geoid is often expressed as a geoid undulation or geoidal height above a given reference ellipsoid, which is a slightly flattened sphere whose equatorial bulge is caused by the planet's rotation. Generally the geoidal height rises where the Earth's material is locally more dense and exerts greater gravitational force than the surrounding areas.

  3. Equipotential - Wikipedia

    en.wikipedia.org/wiki/Equipotential

    An equipotential of a scalar potential function in n-dimensional space is typically an (n − 1)-dimensional space. The del operator illustrates the relationship between a vector field and its associated scalar potential field. An equipotential region might be referred as being 'of equipotential' or simply be called 'an equipotential'.

  4. Figure of the Earth - Wikipedia

    en.wikipedia.org/wiki/Figure_of_the_Earth

    Modern geodesy tends to retain the ellipsoid of revolution as a reference ellipsoid and treat triaxiality and pear shape as a part of the geoid figure: they are represented by the spherical harmonic coefficients , and , respectively, corresponding to degree and order numbers 2.2 for the triaxiality and 3.0 for the pear shape.

  5. Geodetic Reference System 1980 - Wikipedia

    en.wikipedia.org/wiki/Geodetic_Reference_System_1980

    The geometrical separation between it and the reference ellipsoid is called the geoidal undulation, or more usually the geoid-ellipsoid separation, N. It varies globally between ±110 m. A reference ellipsoid, customarily chosen to be the same size (volume) as the geoid, is described by its semi-major axis (equatorial radius) a and flattening f.

  6. Earth ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Earth_ellipsoid

    The shape of an ellipsoid of revolution is determined by the shape parameters of that ellipse. The semi-major axis of the ellipse, a, becomes the equatorial radius of the ellipsoid: the semi-minor axis of the ellipse, b, becomes the distance from the centre to either pole. These two lengths completely specify the shape of the ellipsoid.

  7. Spheroid - Wikipedia

    en.wikipedia.org/wiki/Spheroid

    The most extreme example is Jupiter's moon Io, which becomes slightly more or less prolate in its orbit due to a slight eccentricity, causing intense volcanism. The major axis of the prolate spheroid does not run through the satellite's poles in this case, but through the two points on its equator directly facing toward and away from the primary.

  8. Vertical datum - Wikipedia

    en.wikipedia.org/wiki/Vertical_datum

    Vertical datums in Europe. In geodesy, surveying, hydrography and navigation, vertical datum or altimetric datum is a reference coordinate surface used for vertical positions, such as the elevations of Earth-bound features (terrain, bathymetry, water level, and built structures) and altitudes of satellite orbits and in aviation.

  9. Geodesics on an ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid

    Two examples are given in Figs. 18 and 19. Figure 18 shows practically the same behavior as for an oblate ellipsoid of revolution (because a ≈ b); compare to Fig. 9. However, if the starting point is at a higher latitude (Fig. 18) the distortions resulting from a ≠ b are evident.