Search results
Results from the WOW.Com Content Network
For a complete list of antiderivative functions, see Lists of integrals. For the special antiderivatives involving trigonometric functions, see Trigonometric integral. [1] Generally, if the function is any trigonometric function, and is its derivative,
Since sinc is an even entire function (holomorphic over the entire complex plane), Si is entire, odd, and the integral in its definition can be taken along any path connecting the endpoints. By definition, Si(x) is the antiderivative of sin x / x whose value is zero at x = 0, and si(x) is the antiderivative whose value is zero at x = ∞.
The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.
If the function f does not have any continuous antiderivative which takes the value zero at the zeros of f (this is the case for the sine and the cosine functions), then sgn(f(x)) ∫ f(x) dx is an antiderivative of f on every interval on which f is not zero, but may be discontinuous at the points where f(x) = 0.
3.1 Integrals of hyperbolic tangent, cotangent, secant, cosecant functions 3.2 Integrals involving hyperbolic sine and cosine functions 3.3 Integrals involving hyperbolic and trigonometric functions
At this point we can either integrate directly, or we can first change the integrand to 2 cos 6x − 4 cos 4x + 2 cos 2x and continue from there. Either method gives Either method gives ∫ sin 2 x cos 4 x d x = − 1 24 sin 6 x + 1 8 sin 4 x − 1 8 sin 2 x + C . {\displaystyle \int \sin ^{2}x\cos 4x\,dx=-{\frac {1}{24 ...
For a definite integral, the bounds change once the substitution is performed and are determined using the equation = , with values in the range < <. Alternatively, apply the boundary terms directly to the formula for the antiderivative.
For a complete list of integral formulas, see lists of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration. For each inverse hyperbolic integration formula below there is a corresponding formula in the list of integrals of inverse trigonometric functions.