Search results
Results from the WOW.Com Content Network
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
The long division may begin with a non-zero remainder. The remainder is generally computed using an -bit shift register holding the current remainder, while message bits are added and reduction modulo () is performed. Normal division initializes the shift register to zero, but it may instead be initialized to a non-zero value.
The reciprocal function y = 1 / x . As x approaches zero from the right, y tends to positive infinity. As x approaches zero from the left, y tends to negative infinity. In mathematics, division by zero, division where the divisor (denominator) is zero, is a unique and problematic special case.
To maximise computation speed, an intermediate remainder can be calculated by first computing the CRC of the message modulo a sparse polynomial which is a multiple of the CRC polynomial. For CRC-32, the polynomial x 123 + x 111 + x 92 + x 84 + x 64 + x 46 + x 23 + 1 has the property that its terms (feedback taps) are at least 8 positions apart ...
The hyperbola = /.As approaches ∞, approaches 0.. In mathematics, division by infinity is division where the divisor (denominator) is ∞.In ordinary arithmetic, this does not have a well-defined meaning, since ∞ is a mathematical concept that does not correspond to a specific number, and moreover, there is no nonzero real number that, when added to itself an infinite number of times ...
Animation showing the use of synthetic division to find the quotient of + + + by .Note that there is no term in , so the fourth column from the right contains a zero.. In algebra, synthetic division is a method for manually performing Euclidean division of polynomials, with less writing and fewer calculations than long division.
Given an integer a and a non-zero integer d, it can be shown that there exist unique integers q and r, such that a = qd + r and 0 ≤ r < | d |. The number q is called the quotient, while r is called the remainder. (For a proof of this result, see Euclidean division. For algorithms describing how to calculate the remainder, see Division algorithm.)
Both sums start with the value zero (or some other known value). At the end of the data word, the modulus operator is applied and the two values are combined to form the Fletcher checksum value. Sensitivity to the order of blocks is introduced because once a block is added to the first sum, it is then repeatedly added to the second sum along ...