Search results
Results from the WOW.Com Content Network
In the Eurocode series of European standards (EN) related to construction, Eurocode 1: Actions on structures (abbreviated EN 1991 or, informally, EC 1) describes how to design load-bearing structures. It includes characteristic values for various types of loads and densities for all materials which are likely to be used in construction.
Structural analysis and design software Realsoft 3D: General 3D analysis and design software Revit: BIM & 3D modeling software applied for civil & structural engineering RFEM: 3D structural analysis & design software SDC Verifier: Structural verification and code-checking according to different industrial standards SimScale
Logo of Eurocode 2 An example of a concrete structure. In the Eurocode series of European standards (EN) related to construction, Eurocode 2: Design of concrete structures (abbreviated EN 1992 or, informally, EC 2) specifies technical rules for the design of concrete, reinforced concrete and prestressed concrete structures, using the limit state design philosophy.
Special structures, such as nuclear power plants, offshore structures and large dams, are beyond the scope of EN 1998. EN 1998 contains only those provisions that, in addition to the provisions of the other relevant Eurocodes, must be observed for the design of structures in seismic regions. It complements in this respect the other EN Eurocodes.
Concrete stave silo under construction in 2015. Storage silos are cylindrical structures, typically 10 to 90 ft (3 to 27 m) in diameter and 30 to 275 ft (10 to 90 m) in height with the slipform and Jumpform concrete silos being the larger diameter and taller silos. They can be made of many materials.
In engineering, a factor of safety (FoS) or safety factor (SF) expresses how much stronger a system is than it needs to be for an intended load.Safety factors are often calculated using detailed analysis because comprehensive testing is impractical on many projects, such as bridges and buildings, but the structure's ability to carry a load must be determined to a reasonable accuracy.
Concrete has a very low coefficient of thermal expansion, and as it matures concrete shrinks. All concrete structures will crack to some extent, due to shrinkage and tension. Concrete which is subjected to long-duration forces is prone to creep. The density of concrete varies, but is around 2,400 kilograms per cubic metre (150 lb/cu ft). [1]
EN 1993-6: Crane supporting structures; Eurocode 3 applies to the design of buildings and civil engineering works in steel. It complies with the principles and requirements for the safety and serviceability of structures, the basis of their design and verification that are given in EN 1990 – Basis of structural design. It is only concerned ...