Search results
Results from the WOW.Com Content Network
[3] One may compare linear motion to general motion. In general motion, a particle's position and velocity are described by vectors, which have a magnitude and direction. In linear motion, the directions of all the vectors describing the system are equal and constant which means the objects move along the same axis and do not change direction.
[1] [2] [3] Since the mid-20th century, the term "dynamics" (or "analytical dynamics") has largely superseded "kinetics" in physics textbooks, [4] though the term is still used in engineering. In plasma physics , kinetics refers to the study of continua in velocity space.
Elements of kinematics diagrams include the frame, which is the frame of reference for all the moving components, as well as links (kinematic pairs), and joints. Primary Joints include pins, sliders and other elements that allow pure rotation or pure linear motion. Higher order joints also exist that allow a combination of rotation or linear ...
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Kinematics is a subfield of physics and mathematics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies (groups of objects) without considering the forces that cause them to move.
Modern kinematics developed with study of electromagnetism and refers all velocities to their ratio to speed of light. Velocity is then interpreted as rapidity , the hyperbolic angle φ {\displaystyle \varphi } for which the hyperbolic tangent function tanh φ = v ÷ c {\displaystyle \tanh \varphi =v\div c} .
F is a 3-flat in the eight-dimensional space of dual quaternions. This 3-flat F represents space, and the homography constructed, restricted to F, is a screw displacement of space. Let a be half the angle of the desired turn about axis r, and br half the displacement on the screw axis. Then form z = exp((a + bε)r) and z* = exp((a − bε)r ...
A single unconstrained body soaring in 3-space has 6 degrees of freedom: 3 translational (say, x,y,z); and 3 rotational (say, roll, pitch, yaw). So a system of n {\displaystyle n} unconnected rigid bodies moving in space (a flock of n {\displaystyle n} soaring seagulls) has 6 n {\displaystyle 6n} degrees of freedom measured relative to a fixed ...