Search results
Results from the WOW.Com Content Network
In graph theory, two graphs and ′ are homeomorphic if there is a graph isomorphism from some subdivision of to some subdivision of ′.If the edges of a graph are thought of as lines drawn from one vertex to another (as they are usually depicted in diagrams), then two graphs are homeomorphic to each other in the graph-theoretic sense precisely if their diagrams are homeomorphic in the ...
A chart of a manifold is a homeomorphism between an open subset of the manifold and an open subset of a Euclidean space. The stereographic projection is a homeomorphism between the unit sphere in R 3 {\displaystyle \mathbb {R} ^{3}} with a single point removed and the set of all points in R 2 {\displaystyle \mathbb {R} ^{2}} (a ...
The following other wikis use this file: Usage on de.wikipedia.org Unterteilungsgraph; Usage on el.wikipedia.org Ομοιομορφισμός (γραφικά)
Let M be a topological space.A chart (U, φ) on M consists of an open subset U of M, and a homeomorphism φ from U to an open subset of some Euclidean space R n.Somewhat informally, one may refer to a chart φ : U → R n, meaning that the image of φ is an open subset of R n, and that φ is a homeomorphism onto its image; in the usage of some authors, this may instead mean that φ : U → R n ...
A homomorphism from the flower snark J 5 into the cycle graph C 5. It is also a retraction onto the subgraph on the central five vertices. Thus J 5 is in fact homomorphically equivalent to the core C 5. In the mathematical field of graph theory, a graph homomorphism is a mapping between two graphs that respects their structure
A homeomorphism is a special case of a homotopy equivalence, in which g ∘ f is equal to the identity map id X (not only homotopic to it), and f ∘ g is equal to id Y. [ 7 ] : 0:53:00 Therefore, if X and Y are homeomorphic then they are homotopy-equivalent, but the opposite is not true.
In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces).The word homomorphism comes from the Ancient Greek language: ὁμός (homos) meaning "same" and μορφή (morphe) meaning "form" or "shape".
The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism. If a linear map is a bijection then it is called a linear isomorphism. In the case where =, a linear map is called a linear endomorphism.