enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. History of knot theory - Wikipedia

    en.wikipedia.org/wiki/History_of_knot_theory

    A few major discoveries in the late 20th century greatly rejuvenated knot theory and brought it further into the mainstream. In the late 1970s William Thurston's hyperbolization theorem introduced the theory of hyperbolic 3-manifolds into knot theory and made it of prime importance. In 1982, Thurston received a Fields Medal, the highest honor ...

  3. Thurston–Bennequin number - Wikipedia

    en.wikipedia.org/wiki/Thurston–Bennequin_number

    In the mathematical theory of knots, the Thurston–Bennequin number, or Bennequin number, of a front diagram of a Legendrian knot is defined as the writhe of the diagram minus the number of right cusps. It is named after William Thurston and Daniel Bennequin.

  4. Thurstonian model - Wikipedia

    en.wikipedia.org/wiki/Thurstonian_model

    In Chapter 7 of this book [citation needed], a closed form expression, derived in 1988, is given for a Euclidean-Gaussian similarity model that provides a solution to the well-known problem that many Thurstonian models are computationally complex often involving multiple integration. In Chapter 10, a simple form for ranking tasks is presented ...

  5. Arnold invariants - Wikipedia

    en.wikipedia.org/wiki/Arnold_invariants

    In mathematics, particularly in topology and knot theory, Arnold invariants are invariants introduced by Vladimir Arnold in 1994 [1] for studying the topology and geometry of plane curves. The three main invariants— J + {\displaystyle J^{+}} , J − {\displaystyle J^{-}} , and S t {\displaystyle St} —provide ways to classify and understand ...

  6. Knot theory - Wikipedia

    en.wikipedia.org/wiki/Knot_theory

    Find a rectangle in the plane where one pair of opposite sides are arcs along each knot while the rest of the rectangle is disjoint from the knots. Form a new knot by deleting the first pair of opposite sides and adjoining the other pair of opposite sides. The resulting knot is a sum of the original knots.

  7. Borromean rings - Wikipedia

    en.wikipedia.org/wiki/Borromean_rings

    The first work of knot theory to include the Borromean rings was a catalog of knots and links compiled in 1876 by Peter Tait. [3] In recreational mathematics, the Borromean rings were popularized by Martin Gardner, who featured Seifert surfaces for the Borromean rings in his September 1961 "Mathematical Games" column in Scientific American. [19]

  8. Hyperbolic link - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_link

    A hyperbolic knot is a hyperbolic link with one component. As a consequence of the work of William Thurston, it is known that every knot is precisely one of the following: hyperbolic, a torus knot, or a satellite knot. As a consequence, hyperbolic knots can be considered plentiful. A similar heuristic applies to hyperbolic links.

  9. List of knot theory topics - Wikipedia

    en.wikipedia.org/wiki/List_of_knot_theory_topics

    Knot theory is the study of mathematical knots. While inspired by knots which appear in daily life in shoelaces and rope, a mathematician's knot differs in that the ends are joined so that it cannot be undone. In precise mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, R 3.