enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Saint-Venant's compatibility condition - Wikipedia

    en.wikipedia.org/wiki/Saint-Venant's...

    In the mathematical theory of elasticity, Saint-Venant's compatibility condition defines the relationship between the strain and a displacement field by = (+) where ,. Barré de Saint-Venant derived the compatibility condition for an arbitrary symmetric second rank tensor field to be of this form, this has now been generalized to higher rank symmetric tensor fields on spaces of dimension

  3. Elasticity tensor - Wikipedia

    en.wikipedia.org/wiki/Elasticity_tensor

    The most general linear relation between two second-rank tensors , is = where are the components of a fourth-rank tensor . [1] [note 1] The elasticity tensor is defined as for the case where and are the stress and strain tensors, respectively.

  4. Linear elasticity - Wikipedia

    en.wikipedia.org/wiki/Linear_elasticity

    Expressed in terms of components with respect to a rectangular Cartesian coordinate system, the governing equations of linear elasticity are: [1]. Equation of motion: , + = where the (), subscript is a shorthand for () / and indicates /, = is the Cauchy stress tensor, is the body force density, is the mass density, and is the displacement.

  5. Tensor density - Wikipedia

    en.wikipedia.org/wiki/Tensor_density

    In differential geometry, a tensor density or relative tensor is a generalization of the tensor field concept. A tensor density transforms as a tensor field when passing from one coordinate system to another (see tensor field), except that it is additionally multiplied or weighted by a power W of the Jacobian determinant of the coordinate transition function or its absolute value.

  6. Stress (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Stress_(mechanics)

    Then the differential equations reduce to a finite set of equations (usually linear) with finitely many unknowns. In other contexts one may be able to reduce the three-dimensional problem to a two-dimensional one, and/or replace the general stress and strain tensors by simpler models like uniaxial tension/compression, simple shear, etc.

  7. Cartesian tensor - Wikipedia

    en.wikipedia.org/wiki/Cartesian_tensor

    A dyadic tensor T is an order-2 tensor formed by the tensor product ⊗ of two Cartesian vectors a and b, written T = a ⊗ b.Analogous to vectors, it can be written as a linear combination of the tensor basis e x ⊗ e x ≡ e xx, e x ⊗ e y ≡ e xy, ..., e z ⊗ e z ≡ e zz (the right-hand side of each identity is only an abbreviation, nothing more):

  8. Not all belly fat is created equal. Here are the different ...

    www.aol.com/lifestyle/not-belly-fat-created...

    Visceral fat makes up just 10% of total fat and is harder to detect. “You can't feel visceral fat,” Korner explains. “It is stored deep inside your abdomen and surrounds organs such as your ...

  9. Finite strain theory - Wikipedia

    en.wikipedia.org/wiki/Finite_strain_theory

    Derivation of the Lagrangian and Eulerian finite strain tensors. A measure of deformation is the difference between the squares of the differential line element , in the undeformed configuration, and , in the deformed configuration (Figure 2). Deformation has occurred if the difference is non zero, otherwise a rigid-body displacement has occurred.