enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tensor contraction - Wikipedia

    en.wikipedia.org/wiki/Tensor_contraction

    In multilinear algebra, a tensor contraction is an operation on a tensor that arises from the canonical pairing of a vector space and its dual.In components, it is expressed as a sum of products of scalar components of the tensor(s) caused by applying the summation convention to a pair of dummy indices that are bound to each other in an expression.

  3. Penrose graphical notation - Wikipedia

    en.wikipedia.org/wiki/Penrose_graphical_notation

    Penrose graphical notation (tensor diagram notation) of a matrix product state of five particles. In mathematics and physics, Penrose graphical notation or tensor diagram notation is a (usually handwritten) visual depiction of multilinear functions or tensors proposed by Roger Penrose in 1971. [1]

  4. Cartesian tensor - Wikipedia

    en.wikipedia.org/wiki/Cartesian_tensor

    Cartesian tensors may be used with any Euclidean space, or more technically, any finite-dimensional vector space over the field of real numbers that has an inner product. Use of Cartesian tensors occurs in physics and engineering, such as with the Cauchy stress tensor and the moment of inertia tensor in rigid body dynamics.

  5. Tensors in curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Tensors_in_curvilinear...

    Elementary vector and tensor algebra in curvilinear coordinates is used in some of the older scientific literature in mechanics and physics and can be indispensable to understanding work from the early and mid 1900s, for example the text by Green and Zerna. [1]

  6. Ricci calculus - Wikipedia

    en.wikipedia.org/wiki/Ricci_calculus

    The number of each upper and lower indices of a tensor gives its type: a tensor with p upper and q lower indices is said to be of type (p, q), or to be a type-(p, q) tensor. The number of indices of a tensor, regardless of variance, is called the degree of the tensor (alternatively, its valence, order or rank, although rank is ambiguous).

  7. Tensor decomposition - Wikipedia

    en.wikipedia.org/wiki/Tensor_decomposition

    A multi-way graph with K perspectives is a collection of K matrices ,..... with dimensions I × J (where I, J are the number of nodes). This collection of matrices is naturally represented as a tensor X of size I × J × K. In order to avoid overloading the term “dimension”, we call an I × J × K tensor a three “mode” tensor, where “modes” are the numbers of indices used to index ...

  8. Higher-order singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Higher-order_singular...

    Some aspects can be traced as far back as F. L. Hitchcock in 1928, [1] but it was L. R. Tucker who developed for third-order tensors the general Tucker decomposition in the 1960s, [2] [3] [4] further advocated by L. De Lathauwer et al. [5] in their Multilinear SVD work that employs the power method, or advocated by Vasilescu and Terzopoulos ...

  9. Invariants of tensors - Wikipedia

    en.wikipedia.org/wiki/Invariants_of_tensors

    For symmetric tensors, these definitions are reduced. [2] The correspondence between the principal invariants and the characteristic polynomial of a tensor, in tandem with the Cayley–Hamilton theorem reveals that + =