Search results
Results from the WOW.Com Content Network
When originally published, the law was approximately satisfied by all the planets then known – i.e., Mercury through Saturn – with a gap between the fourth and fifth planets. Vikarius (Johann Friedrich) Wurm (1787) proposed a modified version of the Titius–Bode Law that accounted for the then-known satellites of Jupiter and Saturn, and ...
The force between two bodies is in direct proportion to the product of their masses and in inverse proportion to the square of the distance between them. As the planets have small masses compared to that of the Sun, the orbits conform approximately to Kepler's laws.
If the Sun–Neptune distance is scaled to 100 metres (330 ft), then the Sun would be about 3 cm (1.2 in) in diameter (roughly two-thirds the diameter of a golf ball), the giant planets would be all smaller than about 3 mm (0.12 in), and Earth's diameter along with that of the other terrestrial planets would be smaller than a flea (0.3 mm or 0. ...
It differs from the “light travel distance” since the proper distance takes into account the expansion of the universe, i.e. the space expands as the light travels through it, resulting in numerical values which locate the most distant galaxies beyond the Hubble sphere and therefore with recession velocities greater than the speed of light c.
Distance light travels in one Julian year (365.25 days) — Oort cloud: 75 000: ± 25 000: Distance of the outer limit of Oort cloud from the Sun (estimated, corresponds to 1.2 light-years) — Parsec: 206 265 — One parsec. The parsec is defined in terms of the astronomical unit, is used to measure distances beyond the scope of the Solar ...
Distances between the planets in the Solar System are often measured in astronomical units (AU), defined as the average distance between the Sun and Earth, some 1.5 × 10 8 kilometers (93 million miles). Venus, the closest planet to Earth is (at closest approach) 0.28 AU away. Neptune, the farthest
Their orbit is moderately eccentric, as it has an eccentricity of almost 0.52; [5] their closest approach or periastron is 11.2 AU (1.68 × 10 ^ 9 km), or about the distance between the Sun and Saturn; and their furthest separation or apastron is 35.6 AU (5.33 × 10 ^ 9 km), about the distance between the Sun and Pluto. [16]
One particularly distant body is 90377 Sedna, which was discovered in November 2003.It has an extremely eccentric orbit that takes it to an aphelion of 937 AU. [2] It takes over 10,000 years to orbit, and during the next 50 years it will slowly move closer to the Sun as it comes to perihelion at a distance of 76 AU from the Sun. [3] Sedna is the largest known sednoid, a class of objects that ...