Search results
Results from the WOW.Com Content Network
Galileo's demonstration of the law of the space traversed in case of uniformly varied motion. It is the same demonstration that Oresme had made centuries earlier. The mean speed theorem , also known as the Merton rule of uniform acceleration , [ 1 ] was discovered in the 14th century by the Oxford Calculators of Merton College , and was proved ...
Albert Einstein (1907) [H 13] studied the effects within a uniformly accelerated frame, obtaining equations for coordinate dependent time dilation and speed of light equivalent to , and in order to make the formulas independent of the observer's origin, he obtained time dilation in formal agreement with Radar coordinates.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
is the uniform rate of acceleration. In particular, the motion can be resolved into two orthogonal parts, one of constant velocity and the other according to the above equations. As Galileo showed, the net result is parabolic motion, which describes, e.g., the trajectory of a projectile in vacuum near the surface of Earth.
Also equations of motion can be formulated which connect acceleration and force. Equations for several forms of acceleration of bodies and their curved world lines follow from these formulas by integration. Well known special cases are hyperbolic motion for constant longitudinal proper acceleration or uniform circular motion.
The relation between the net force and the acceleration is given by the equation F = ma (Newton's second law), and the particle displacement s can be expressed by the equation = which follows from = + (see Equations of motion). The work of the net force is calculated as the product of its magnitude and the particle displacement.
Velocity and acceleration in non-uniform circular motion. In non-uniform circular motion, an object moves in a circular path with varying speed. Since the speed is changing, there is tangential acceleration in addition to normal acceleration. The net acceleration is directed towards the interior of the circle (but does not pass through its center).
There are three Kinematic equations for linear (and generally uniform) motion. These are v = u + at; v 2 = u 2 + 2as; s = ut + 1 / 2 at 2; Besides these equations, there is one more equation used for finding displacement from the 0th to the nth second. The equation is: = + ()