Search results
Results from the WOW.Com Content Network
This is a list of well-known dimensionless quantities illustrating their variety of forms and applications. The tables also include pure numbers, dimensionless ratios, or dimensionless physical constants; these topics are discussed in the article.
Dimensionless quantities, or quantities of dimension one, [1] are quantities implicitly defined in a manner that prevents their aggregation into units of measurement. [ 2 ] [ 3 ] Typically expressed as ratios that align with another system, these quantities do not necessitate explicitly defined units .
Dimensionless quantities, or quantities of dimension one, [2] are quantities implicitly defined in a manner that prevents their aggregation into units of measurement. [3] [4] Typically expressed as ratios that align with another system, these quantities do not necessitate explicitly defined units.
Nondimensionalization is the partial or full removal of physical dimensions from an equation involving physical quantities by a suitable substitution of variables. This technique can simplify and parameterize problems where measured units are involved. It is closely related to dimensional analysis.
The term fundamental physical constant is sometimes used to refer to some universal dimensionless constants. Perhaps the best-known example is the fine-structure constant , α , which has an approximate value of 1 / 137.036 .
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Many of these are redundant, in the sense that they obey a known relationship with other physical ...
Dimensionless quantities of chemistry (4 P) Countable quantities (1 C, 4 P) Pages in category "Dimensionless quantities" ... Statistics; Cookie statement;
All physical quantities are identified with geometric quantities such as areas, lengths, dimensionless numbers, path curvatures, or sectional curvatures. Many equations in relativistic physics appear simpler when expressed in geometric units, because all occurrences of G and of c drop out.