enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. L-shell - Wikipedia

    en.wikipedia.org/wiki/L-shell

    Plot showing field lines (which, in three dimensions would describe "shells") for L-values 1.5, 2, 3, 4 and 5 using a dipole model of the Earth's magnetic field. The L-shell, L-value, or McIlwain L-parameter (after Carl E. McIlwain) is a parameter describing a particular set of planetary magnetic field lines.

  3. Magnetohydrodynamics - Wikipedia

    en.wikipedia.org/wiki/Magnetohydrodynamics

    Electron Magnetohydrodynamics (EMHD) describes small scales plasmas when electron motion is much faster than the ion one. The main effects are changes in conservation laws, additional resistivity, importance of electron inertia. Many effects of Electron MHD are similar to effects of the Two fluid MHD and the Hall MHD.

  4. Birkeland current - Wikipedia

    en.wikipedia.org/wiki/Birkeland_current

    A Birkeland current (also known as field-aligned current, FAC) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere. In the Earth's magnetosphere, the currents are driven by the solar wind and interplanetary magnetic field (IMF) and by bulk motions ...

  5. Dipole model of the Earth's magnetic field - Wikipedia

    en.wikipedia.org/wiki/Dipole_model_of_the_earth's...

    The dipole model of the Earth's magnetic field is a first order approximation of the rather complex true Earth's magnetic field. Due to effects of the interplanetary magnetic field (IMF), and the solar wind, the dipole model is particularly inaccurate at high L-shells (e.g., above L=3), but may be a good approximation for lower L-shells.

  6. Magnetic reconnection - Wikipedia

    en.wikipedia.org/wiki/Magnetic_reconnection

    Magnetic reconnection is a breakdown of "ideal-magnetohydrodynamics" and so of "Alfvén's theorem" (also called the "frozen-in flux theorem") which applies to large-scale regions of a highly-conducting magnetoplasma, for which the Magnetic Reynolds Number is very large: this makes the convective term in the induction equation dominate in such regions.

  7. Magnetospheric electric convection field - Wikipedia

    en.wikipedia.org/wiki/Magnetospheric_electric...

    Magnetospheric electric convection field. Electric field created by impact of solar wind onto the magnetosphere. The impact of the solar wind onto the magnetosphere generates an electric field within the inner magnetosphere (r < 10 a; with a the Earth's radius) - the convection field. [1] Its general direction is from dawn to dusk.

  8. Magnetosphere particle motion - Wikipedia

    en.wikipedia.org/wiki/Magnetosphere_particle_motion

    Magnetosphere particle motion. A sketch of Earth's magnetic field representing the source of Earth's magnetic field as a magnet The North Pole of Earth is near the top of the diagram, the South Pole near the bottom. Notice that the South Pole of that magnet is deep in Earth's interior below Earth's North Magnetic Pole.

  9. Magnetosphere - Wikipedia

    en.wikipedia.org/wiki/Magnetosphere

    The magnetosphere of Jupiter is the largest planetary magnetosphere in the Solar System, extending up to 7,000,000 kilometers (4,300,000 mi) on the dayside and almost to the orbit of Saturn on the nightside. [17] Jupiter's magnetosphere is stronger than Earth's by an order of magnitude, and its magnetic moment is approximately 18,000 times ...