enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bragg's law - Wikipedia

    en.wikipedia.org/wiki/Bragg's_law

    The angles that Bragg's law predicts are still approximately right, but in general there is a lattice of spots which are close to projections of the reciprocal lattice that is at right angles to the direction of the electron beam. (In contrast, Bragg's law predicts that only one or perhaps two would be present, not simultaneously tens to hundreds.)

  3. Bragg plane - Wikipedia

    en.wikipedia.org/wiki/Bragg_plane

    In physics, a Bragg plane is a plane in reciprocal space which bisects a reciprocal lattice vector, , at right angles. [1] The Bragg plane is defined as part of the Von Laue condition for diffraction peaks in x-ray diffraction crystallography .

  4. Reciprocal lattice - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_lattice

    The computer-generated reciprocal lattice of a fictional monoclinic 3D crystal. A two-dimensional crystal and its reciprocal lattice. The reciprocal lattice is a term associated with solids with translational symmetry, and plays a major role in many areas such as X-ray and electron diffraction as well as the energies of electrons in a solid.

  5. Laue equations - Wikipedia

    en.wikipedia.org/wiki/Laue_equations

    This means that X-rays are seemingly "reflected" off parallel crystal lattice planes perpendicular at the same angle as their angle of approach to the crystal with respect to the lattice planes; in the elastic light (typically X-ray)-crystal scattering, parallel crystal lattice planes perpendicular to a reciprocal lattice vector for the crystal ...

  6. Brillouin zone - Wikipedia

    en.wikipedia.org/wiki/Brillouin_zone

    The first Brillouin zone is the locus of points in reciprocal space that are closer to the origin of the reciprocal lattice than they are to any other reciprocal lattice points (see the derivation of the Wigner–Seitz cell). Another definition is as the set of points in k-space that can be reached from the origin without crossing any Bragg plane.

  7. Miller index - Wikipedia

    en.wikipedia.org/wiki/Miller_index

    This is based on the fact that a reciprocal lattice vector (the vector indicating a reciprocal lattice point from the reciprocal lattice origin) is the wavevector of a plane wave in the Fourier series of a spatial function (e.g., electronic density function) which periodicity follows the original Bravais lattice, so wavefronts of the plane wave ...

  8. Structure factor - Wikipedia

    en.wikipedia.org/wiki/Structure_factor

    The reciprocal lattice is easily constructed in one dimension: for particles on a line with a period , the reciprocal lattice is an infinite array of points with spacing /. In two dimensions, there are only five Bravais lattices. The corresponding reciprocal lattices have the same symmetry as the direct lattice.

  9. Ewald's sphere - Wikipedia

    en.wikipedia.org/wiki/Ewald's_sphere

    In the Figure the red dot is the origin for the wavevectors, the black spots are reciprocal lattice points (vectors) and shown in blue are three wavevectors. For the wavevector k 1 {\displaystyle \mathbf {k_{1}} } the corresponding reciprocal lattice point g 1 {\displaystyle \mathbf {g_{1}} } lies on the Ewald sphere, which is the condition for ...